A strategic approach for the design and operation of two-phase partitioning bioscrubbers for the treatment of volatile organic compounds

Sung Ho Yeom, Andrew J. Daugulis, David R. Nielsen

Research output: Contribution to journalArticle

10 Scopus citations

Abstract

A strategic approach for the design of two-phase partitioning bioscrubbers (TPPBs) has been formulated using, as a basis, a re-evaluation of extensive literature data available for the degradation of benzene by Achromobacter xylosoxidans Y234 in TPPBs with n-hexadecane as the partitioning phase. Using a previously determined maintenance coefficient for benzene, we determined that an inlet benzene loading rate of 100 mg/h requires 5,928 mg cell mass at biological steady state and 243.0 mg O2/h. The total oxygen-transfer rates (TOTRs) into the TPPB increased by 83.5% with 33.3% of organic phase compared with a single aqueous phase and were significantly influenced by gas flow rate, whereas agitation has a minor affect. The fraction of organic phase used was suggested to be the primary parameter with which the TOTR into the TPPB may be altered. Although the presence of an organic solvent in the TPPB remarkably increased the TOTR, the total benzene transfer rate into the TPPB remained largely insensitive due to the intrinsic low Henry's law constant (or relatively high solubility) of benzene in water. Finally, we have integrated the elements of this analysis into a set of heuristic criteria that can serve as a guideline for the design of TPPB systems for future volatile organic compound treatment applications.

Original languageEnglish (US)
Pages (from-to)1777-1786
Number of pages10
JournalBiotechnology Progress
Volume26
Issue number6
DOIs
StatePublished - Nov 1 2010

Keywords

  • Design
  • Guideline
  • Operating conditions
  • Two-phase partitioning bioscrubber

ASJC Scopus subject areas

  • Biotechnology

Fingerprint Dive into the research topics of 'A strategic approach for the design and operation of two-phase partitioning bioscrubbers for the treatment of volatile organic compounds'. Together they form a unique fingerprint.

  • Cite this