Abstract
We have constructed a stochastic stage-structured model of the cytotoxic T lymphocyte (CTL) response to antigen and the maintenance of immunological memory. The model follows the dynamics of a viral infection and the stimulation, proliferation, and differentiation of naïve CD8+ T cells into effector CTL, which can eliminate virally infected cells. The model is capable of following the dynamics of multiple T cell clones, each with a T cell receptor represented by a digit string. MHC-viral peptide complexes are also represented by strings and a string match rule is used to compute the affinity of a T cell receptor for a viral epitope. The avidities of interactions are also computed by taking into consideration the density of MHC-viral peptides on the surface of an infected cell. Lastly, the model allows the probability of T cell stimulation to depend on avidity but also incorporates the notion of an antigen-independent programmed proliferative response. We compare the model to experimental data on the cytotoxic T cell response to lymphocytic choriomeningitis virus infections.
Original language | English (US) |
---|---|
Pages (from-to) | 227-240 |
Number of pages | 14 |
Journal | Journal of Theoretical Biology |
Volume | 228 |
Issue number | 2 |
DOIs | |
State | Published - May 21 2004 |
Externally published | Yes |
Keywords
- Cytotoxic T lymphocyte
- Immunological memory
- Immunology
- Stage-structured modeling
ASJC Scopus subject areas
- Statistics and Probability
- Modeling and Simulation
- Biochemistry, Genetics and Molecular Biology(all)
- Immunology and Microbiology(all)
- Agricultural and Biological Sciences(all)
- Applied Mathematics