Abstract

A multispecies biofilm model is developed for simultaneous reduction of nitrate and perchlorate in the H 2-based membrane biofilm reactor. The one-dimension model includes dual-substrate Monod kinetics for a steady-state biofilm with five solid and five dissolved components. The solid components are autotrophic denitrifying bacteria, autotrophic perchlorate-reducing bacteria, heterotrophic bacteria, inert biomass, and extracellular polymeric substances (EPS). The dissolved components are nitrate, perchlorate, hydrogen (H 2), substrate-utilization-associated products, and biomass-associated products (BAP). The model explicitly considers four mechanisms involved in how three important operating conditions (H 2 pressure, nitrate loading, and perchlorate loading) affect nitrate and perchlorate removals: (1) competition for H 2, (2) promotion of PRB growth due to having two electron acceptors (nitrate and perchlorate), (3) competition between nitrate and perchlorate reduction for the same resources in the PRB: electrons and possibly reductase enzymes, and (4) competition for space in the biofilm. Two other special features are having H 2 delivered from the membrane substratum and solving directly for steady state using a novel three-step approach: finite-difference for approximating partial differential and/or integral equations, Newton-Raphson for solving nonlinear equations, and an iterative scheme to obtain the steady-state biofilm thickness. An example result illustrates the model's features.

Original languageEnglish (US)
Pages (from-to)1598-1607
Number of pages10
JournalEnvironmental Science and Technology
Volume46
Issue number3
DOIs
StatePublished - Feb 7 2012

ASJC Scopus subject areas

  • Chemistry(all)
  • Environmental Chemistry

Fingerprint

Dive into the research topics of 'A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, part 1: Model development and numerical solution'. Together they form a unique fingerprint.

Cite this