A single-cell genome reveals diplonemidlike ancestry of kinetoplastid mitochondrial gene structure

Jeremy G. Wideman, Gordon Lax, Guy Leonard, David S. Milner, Raquel Rodríguez-Martínez, Alastair G.B. Simpson, Thomas A. Richards

Research output: Contribution to journalArticlepeer-review

9 Scopus citations

Abstract

Euglenozoa comprises euglenids, kinetoplastids, and diplonemids, with each group exhibiting different and highly unusual mitochondrial genome organizations. Although they are sister groups, kinetoplastids and diplonemids have very distinct mitochondrial genome architectures, requiring widespread insertion/deletion RNA editing and extensive trans-splicing, respectively, in order to generate functional transcripts. The evolutionary history by which these differing processes arose remains unclear. Using single-cell genomics, followed by small sub unit ribosomal DNA and multigene phylogenies, we identified an isolated marine cell that branches on phylogenetic trees as a sister to known kinetoplastids. Analysis of singlecell amplified genomic material identified multiple mitochondrial genome contigs. These revealed a gene architecture resembling that of diplonemid mitochondria, with small fragments of genes encoded out of order and or on different contigs, indicating that these genes require extensive trans-splicing. Conversely, no requirement for kinetoplastid-like insertion/deletion RNA-editing was detected. Additionally, while we identified some proteins so far only found in kinetoplastids, we could not unequivocally identify mitochondrial RNA editing proteins. These data invite the hypothesis that extensive genome fragmentation and trans-splicing were the ancestral states for the kinetoplastid-diplonemid clade but were lost during the kinetoplastid radiation. This study demonstrates that single-cell approaches can successfully retrieve lineages that represent important new branches on the tree of life, and thus can illuminate major evolutionary and functional transitions in eukaryotes.

Original languageEnglish (US)
Article number20190100
JournalPhilosophical Transactions of the Royal Society B: Biological Sciences
Volume374
Issue number1786
DOIs
StatePublished - Nov 25 2019

Keywords

  • Diplonemids
  • Evolution
  • Kinetoplastids
  • Mitochondrial genome
  • Single-cell genomics

ASJC Scopus subject areas

  • General Biochemistry, Genetics and Molecular Biology
  • General Agricultural and Biological Sciences

Fingerprint

Dive into the research topics of 'A single-cell genome reveals diplonemidlike ancestry of kinetoplastid mitochondrial gene structure'. Together they form a unique fingerprint.

Cite this