A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor

Ross N. Hoffman, Rui M. Ponte, Eric Kostelich, Alan Blumberg, Istvan Szunyogh, Sergey V. Vinogradov, John M. Henderson

Research output: Contribution to journalArticle

8 Citations (Scopus)

Abstract

Data assimilation approaches that use ensembles to approximate a Kalman filter have many potential advantages for oceanographic applications. To explore the extent to which this holds, the Estuarine and Coastal Ocean Model (ECOM) is coupled with a modern data assimilation method based on the local ensemble transform Kalman filter (LETKF), and a series of simulation experiments is conducted. In these experiments, a long ECOM "nature" run is taken to be the "truth." Observations are generated at analysis times by perturbing the nature run at randomly chosen model grid points with errors of known statistics. A diverse collection of model states is used for the initial ensemble. All experiments use the same lateral boundary conditions and external forcing fields as in the nature run. In the data assimilation, the analysis step combines the observations and the ECOM forecasts using the Kalman filter equations. As a control, a free-running forecast (FRF) is made from the initial ensemble mean to check the relative importance of external forcing versus data assimilation on the analysis skill. Results of the assimilation cycle and the FRF are compared to truth to quantify the skill of each. The LETKF performs well for the cases studied here. After just a few assimilation cycles, the analysis errors are smaller than the observation errors and are much smaller than the errors in the FRF. The assimilation quickly eliminates the domain-averaged bias of the initial ensemble. The filter accurately tracks the truth at all data densities examined, from observations at 50% of the model grid points down to 2% of the model grid points. As the data density increases, the ensemble spread, bias, and error standard deviation decrease. As the ensemble size increases, the ensemble spread increases and the error standard deviation decreases. Increases in the size of the observation error lead to a larger ensemble spread but have a small impact on the analysis accuracy.

Original languageEnglish (US)
Pages (from-to)1638-1656
Number of pages19
JournalJournal of Atmospheric and Oceanic Technology
Volume25
Issue number9
DOIs
StatePublished - 2008

Fingerprint

Kalman filter
Ports and harbors
data assimilation
Kalman filters
harbor
transform
simulation
ocean
Marine applications
experiment
Experiments
error analysis
Error analysis
boundary condition
Statistics
Boundary conditions
filter
forecast
analysis
assimilation

ASJC Scopus subject areas

  • Atmospheric Science
  • Ocean Engineering

Cite this

A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. / Hoffman, Ross N.; Ponte, Rui M.; Kostelich, Eric; Blumberg, Alan; Szunyogh, Istvan; Vinogradov, Sergey V.; Henderson, John M.

In: Journal of Atmospheric and Oceanic Technology, Vol. 25, No. 9, 2008, p. 1638-1656.

Research output: Contribution to journalArticle

Hoffman, Ross N. ; Ponte, Rui M. ; Kostelich, Eric ; Blumberg, Alan ; Szunyogh, Istvan ; Vinogradov, Sergey V. ; Henderson, John M. / A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor. In: Journal of Atmospheric and Oceanic Technology. 2008 ; Vol. 25, No. 9. pp. 1638-1656.
@article{a55342d0a9ee4f589f50941447112f94,
title = "A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor",
abstract = "Data assimilation approaches that use ensembles to approximate a Kalman filter have many potential advantages for oceanographic applications. To explore the extent to which this holds, the Estuarine and Coastal Ocean Model (ECOM) is coupled with a modern data assimilation method based on the local ensemble transform Kalman filter (LETKF), and a series of simulation experiments is conducted. In these experiments, a long ECOM {"}nature{"} run is taken to be the {"}truth.{"} Observations are generated at analysis times by perturbing the nature run at randomly chosen model grid points with errors of known statistics. A diverse collection of model states is used for the initial ensemble. All experiments use the same lateral boundary conditions and external forcing fields as in the nature run. In the data assimilation, the analysis step combines the observations and the ECOM forecasts using the Kalman filter equations. As a control, a free-running forecast (FRF) is made from the initial ensemble mean to check the relative importance of external forcing versus data assimilation on the analysis skill. Results of the assimilation cycle and the FRF are compared to truth to quantify the skill of each. The LETKF performs well for the cases studied here. After just a few assimilation cycles, the analysis errors are smaller than the observation errors and are much smaller than the errors in the FRF. The assimilation quickly eliminates the domain-averaged bias of the initial ensemble. The filter accurately tracks the truth at all data densities examined, from observations at 50{\%} of the model grid points down to 2{\%} of the model grid points. As the data density increases, the ensemble spread, bias, and error standard deviation decrease. As the ensemble size increases, the ensemble spread increases and the error standard deviation decreases. Increases in the size of the observation error lead to a larger ensemble spread but have a small impact on the analysis accuracy.",
author = "Hoffman, {Ross N.} and Ponte, {Rui M.} and Eric Kostelich and Alan Blumberg and Istvan Szunyogh and Vinogradov, {Sergey V.} and Henderson, {John M.}",
year = "2008",
doi = "10.1175/2008JTECHO565.1",
language = "English (US)",
volume = "25",
pages = "1638--1656",
journal = "Journal of Atmospheric and Oceanic Technology",
issn = "0739-0572",
publisher = "American Meteorological Society",
number = "9",

}

TY - JOUR

T1 - A simulation study using a local ensemble transform Kalman filter for data assimilation in New York Harbor

AU - Hoffman, Ross N.

AU - Ponte, Rui M.

AU - Kostelich, Eric

AU - Blumberg, Alan

AU - Szunyogh, Istvan

AU - Vinogradov, Sergey V.

AU - Henderson, John M.

PY - 2008

Y1 - 2008

N2 - Data assimilation approaches that use ensembles to approximate a Kalman filter have many potential advantages for oceanographic applications. To explore the extent to which this holds, the Estuarine and Coastal Ocean Model (ECOM) is coupled with a modern data assimilation method based on the local ensemble transform Kalman filter (LETKF), and a series of simulation experiments is conducted. In these experiments, a long ECOM "nature" run is taken to be the "truth." Observations are generated at analysis times by perturbing the nature run at randomly chosen model grid points with errors of known statistics. A diverse collection of model states is used for the initial ensemble. All experiments use the same lateral boundary conditions and external forcing fields as in the nature run. In the data assimilation, the analysis step combines the observations and the ECOM forecasts using the Kalman filter equations. As a control, a free-running forecast (FRF) is made from the initial ensemble mean to check the relative importance of external forcing versus data assimilation on the analysis skill. Results of the assimilation cycle and the FRF are compared to truth to quantify the skill of each. The LETKF performs well for the cases studied here. After just a few assimilation cycles, the analysis errors are smaller than the observation errors and are much smaller than the errors in the FRF. The assimilation quickly eliminates the domain-averaged bias of the initial ensemble. The filter accurately tracks the truth at all data densities examined, from observations at 50% of the model grid points down to 2% of the model grid points. As the data density increases, the ensemble spread, bias, and error standard deviation decrease. As the ensemble size increases, the ensemble spread increases and the error standard deviation decreases. Increases in the size of the observation error lead to a larger ensemble spread but have a small impact on the analysis accuracy.

AB - Data assimilation approaches that use ensembles to approximate a Kalman filter have many potential advantages for oceanographic applications. To explore the extent to which this holds, the Estuarine and Coastal Ocean Model (ECOM) is coupled with a modern data assimilation method based on the local ensemble transform Kalman filter (LETKF), and a series of simulation experiments is conducted. In these experiments, a long ECOM "nature" run is taken to be the "truth." Observations are generated at analysis times by perturbing the nature run at randomly chosen model grid points with errors of known statistics. A diverse collection of model states is used for the initial ensemble. All experiments use the same lateral boundary conditions and external forcing fields as in the nature run. In the data assimilation, the analysis step combines the observations and the ECOM forecasts using the Kalman filter equations. As a control, a free-running forecast (FRF) is made from the initial ensemble mean to check the relative importance of external forcing versus data assimilation on the analysis skill. Results of the assimilation cycle and the FRF are compared to truth to quantify the skill of each. The LETKF performs well for the cases studied here. After just a few assimilation cycles, the analysis errors are smaller than the observation errors and are much smaller than the errors in the FRF. The assimilation quickly eliminates the domain-averaged bias of the initial ensemble. The filter accurately tracks the truth at all data densities examined, from observations at 50% of the model grid points down to 2% of the model grid points. As the data density increases, the ensemble spread, bias, and error standard deviation decrease. As the ensemble size increases, the ensemble spread increases and the error standard deviation decreases. Increases in the size of the observation error lead to a larger ensemble spread but have a small impact on the analysis accuracy.

UR - http://www.scopus.com/inward/record.url?scp=65549093310&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=65549093310&partnerID=8YFLogxK

U2 - 10.1175/2008JTECHO565.1

DO - 10.1175/2008JTECHO565.1

M3 - Article

AN - SCOPUS:65549093310

VL - 25

SP - 1638

EP - 1656

JO - Journal of Atmospheric and Oceanic Technology

JF - Journal of Atmospheric and Oceanic Technology

SN - 0739-0572

IS - 9

ER -