Abstract
We present limits on the 21 cm power spectrum from the Epoch of Reionization using data from the 64 antenna configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) analyzed through a power spectrum pipeline independent from previous PAPER analyses. Previously reported results from PAPER have been found to contain significant signal loss. Several lossy steps from previous PAPER pipelines have not been included in this analysis, namely delay-based foreground filtering, optimal fringe-rate filtering, and empirical covariance-based estimators. Steps that remain in common with previous analyses include redundant calibration and local sidereal time (LST) binning. The power spectra reported here are effectively the result of applying a linear Fourier transform analysis to the calibrated, LST-binned data. This analysis also uses more data than previous publications, including the complete available redshift range of z ∼ 7.5 to 11. In previous PAPER analyses, many power spectrum measurements were found to be detections of noncosmological power at levels of significance ranging from two to hundreds of times the theoretical noise. Here, excess power is examined using redundancy between baselines and power spectrum jackknives. The upper limits we find on the 21 cm power spectrum from reionization are (1500 mK)2, (1900 mK)2, (280mK)2, (200mK)2, (380mK)2, and (300mK)2 at redshifts z = 10.87, 9.93, 8.68, 8.37, 8.13, and 7.48, respectively. For reasons described in Cheng et al., these limits supersede all previous PAPER results.
Original language | English (US) |
---|---|
Article number | 133 |
Journal | Astrophysical Journal |
Volume | 883 |
Issue number | 2 |
DOIs | |
State | Published - Oct 1 2019 |
Keywords
- dark ages
- first stars
- reionization
ASJC Scopus subject areas
- Astronomy and Astrophysics
- Space and Planetary Science
Fingerprint
Dive into the research topics of 'A Simplified, Lossless Reanalysis of PAPER-64'. Together they form a unique fingerprint.Cite this
- APA
- Standard
- Harvard
- Vancouver
- Author
- BIBTEX
- RIS
In: Astrophysical Journal, Vol. 883, No. 2, 133, 01.10.2019.
Research output: Contribution to journal › Article › peer-review
}
TY - JOUR
T1 - A Simplified, Lossless Reanalysis of PAPER-64
AU - Kolopanis, Matthew
AU - Jacobs, Daniel C.
AU - Cheng, Carina
AU - Parsons, Aaron R.
AU - Kohn, Saul A.
AU - Pober, Jonathan C.
AU - Aguirre, James E.
AU - Ali, Zaki S.
AU - Bernardi, Gianni
AU - Bradley, Richard F.
AU - Carilli, Chris L.
AU - Deboer, David R.
AU - Dexter, Matthew R.
AU - Dillon, Joshua S.
AU - Kerrigan, Joshua
AU - Klima, Pat
AU - Liu, Adrian
AU - MacMahon, David H.E.
AU - Moore, David F.
AU - Thyagarajan, Nithyanandan
AU - Nunhokee, Chuneeta D.
AU - Walbrugh, William P.
AU - Walker, Andre
N1 - Funding Information: Matthew Kolopanis Daniel C. Jacobs Carina Cheng Aaron R. Parsons Saul A. Kohn Jonathan C. Pober James E. Aguirre Zaki S. Ali Gianni Bernardi Richard F. Bradley Chris L. Carilli David R. DeBoer Matthew R. Dexter Joshua S. Dillon Joshua Kerrigan Pat Klima Adrian Liu David H. E. MacMahon David F. Moore Nithyanandan Thyagarajan Chuneeta D. Nunhokee William P. Walbrugh Andre Walker Matthew Kolopanis Daniel C. Jacobs Carina Cheng Aaron R. Parsons Saul A. Kohn Jonathan C. Pober James E. Aguirre Zaki S. Ali Gianni Bernardi Richard F. Bradley Chris L. Carilli David R. DeBoer Matthew R. Dexter Joshua S. Dillon Joshua Kerrigan Pat Klima Adrian Liu David H. E. MacMahon David F. Moore Nithyanandan Thyagarajan Chuneeta D. Nunhokee William P. Walbrugh Andre Walker School of Earth and Space Exploration, Arizona State University, Tempe AZ, USA Astronomy Department, University of California, Berkeley, CA, USA Radio Astronomy Laboratory, University of California, Berkeley CA, USA Department of Physics and Astronomy, University of Pennsylvania, Philadelphia PA, USA Department of Physics, Brown University, Providence RI, USA INAF-Istituto di Radioastronomia, via Gobetti 101, I-40129, Bologna, Italy Department of Physics and Electronics, Rhodes University, PO Box 94, Grahamstown, 6140, South Africa South African Radio Astronomy Observatory, Black River Park, 2 Fir Street, Observatory, Cape Town, 7925, South Africa Department of Electrical and Computer Engineering, University of Virginia, Charlottesville VA, USA National Radio Astronomy Observatory, Charlottesville VA, USA Department of of Astronomy, University of Virginia, Charlottesville VA, USA National Radio Astronomy Observatory, Socorro, NM, USA Cavendish Laboratory, Cambridge, UK Department of Physics and McGill Space Institute, McGill University, Montreal, QC, Canada CIFAR Azrieli Global Scholar, Gravity & the Extreme Universe Program, Canadian Institute for Advanced Research, 661 University Avenue, Suite 505, Toronto, Ontario M5G 1M1, Canada NSF AAPF Fellow. Jansky Fellow of the National Radio Astronomy Observatory. Matthew Kolopanis, Daniel C. Jacobs, Carina Cheng, Aaron R. Parsons, Saul A. Kohn, Jonathan C. Pober, James E. Aguirre, Zaki S. Ali, Gianni Bernardi, Richard F. Bradley, Chris L. Carilli, David R. DeBoer, Matthew R. Dexter, Joshua S. Dillon, Joshua Kerrigan, Pat Klima, Adrian Liu, David H. E. MacMahon, David F. Moore, Nithyanandan Thyagarajan, Chuneeta D. Nunhokee, William P. Walbrugh and Andre Walker 2019-10-01 2019-09-27 10:01:31 cgi/release: Article released bin/incoming: New from .zip National Science Foundation AST-1613973 National Science Foundation 1106400 National Science Foundation 1440343 National Science Foundation 1636646 National Science Foundation 1352519 National Science Foundation 1401708 National Science Foundation 1455151 INAF PRIN-SKA 1.05.01.88.04 Ministero degli Affari Esteri della Cooperazione Internazionale - Direzione Generale per la Promozione del Sistema Paese Progetto di Grande Rilevanza ZA18GR02 National Research Foundation of South Africa 113121 National Research Foundation of South Africa 103424 yes We present limits on the 21 cm power spectrum from the Epoch of Reionization using data from the 64 antenna configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) analyzed through a power spectrum pipeline independent from previous PAPER analyses. Previously reported results from PAPER have been found to contain significant signal loss. Several lossy steps from previous PAPER pipelines have not been included in this analysis, namely delay-based foreground filtering, optimal fringe-rate filtering, and empirical covariance-based estimators. Steps that remain in common with previous analyses include redundant calibration and local sidereal time (LST) binning. The power spectra reported here are effectively the result of applying a linear Fourier transform analysis to the calibrated, LST-binned data. This analysis also uses more data than previous publications, including the complete available redshift range of z �∼�7.5 to 11. In previous PAPER analyses, many power spectrum measurements were found to be detections of noncosmological power at levels of significance ranging from two to hundreds of times the theoretical noise. Here, excess power is examined using redundancy between baselines and power spectrum jackknives. The upper limits we find on the 21 cm power spectrum from reionization are , , , , , and at redshifts z �=�10.87, 9.93, 8.68, 8.37, 8.13, and 7.48, respectively. For reasons described in Cheng et al., these limits supersede all previous PAPER results. � 2019. The American Astronomical Society. All rights reserved. Ali S. S., Bharadwaj S. and Chengalur J. N. 2008 MNRAS 385 2166 10.1111/j.1365-2966.2008.12984.x Ali S. S., Bharadwaj S. and Chengalur J. N. MNRAS 0035-8711 385 2008 2166 Ali Z. S., Parsons A. R., Zheng H. et al 2015 ApJ 809 61 10.1088/0004-637X/809/1/61 Ali Z. S., Parsons A. R., Zheng H. et al ApJ 0004-637X 809 1 61 2015 61 Ali Z. S., Parsons A. R., Zheng H. et al 2018 ApJ 863 201 10.3847/1538-4357/aad7b4 Ali Z. S., Parsons A. R., Zheng H. et al ApJ 0004-637X 863 2 201 2018 201 Andrae R. 2010 arXiv:1009.2755 Andrae R. 2010 Astropy Collaboration, Robitaille T. P., Tollerud E. J. et al 2013 A&A 558 A33 10.1051/0004-6361/201322068 Astropy Collaboration, Robitaille T. P., Tollerud E. J. et al A&A 0004-6361 558 2013 A33 Barkana R. and Loeb A. 2001 PhR 349 125 10.1016/S0370-1573(01)00019-9 Barkana R. and Loeb A. PhR 349 2001 125 Barkana R. and Loeb A. 2007 RPPh 70 627 10.1088/0034-4885/70/4/R02 Barkana R. and Loeb A. RPPh 0034-4885 70 4 R02 2007 627 Beardsley A. P., Hazelton B. J., Sullivan I. S. et al 2016 ApJ 833 102 10.3847/1538-4357/833/1/102 Beardsley A. P., Hazelton B. J., Sullivan I. S. et al ApJ 0004-637X 833 1 102 2016 102 Bernardi G., de Bruyn A. G., Brentjens M. A. et al 2009 A&A 500 965 10.1051/0004-6361/200911627 Bernardi G., de Bruyn A. G., Brentjens M. A. et al A&A 0004-6361 500 2009 965 Bernardi G., de Bruyn A. G., Harker G. et al 2010 A&A 522 A67 10.1051/0004-6361/200913420 Bernardi G., de Bruyn A. G., Harker G. et al A&A 0004-6361 522 2010 A67 Bernardi G., Greenhill L. J., Mitchell D. A. et al 2013 ApJ 771 105 10.1088/0004-637X/771/2/105 Bernardi G., Greenhill L. J., Mitchell D. A. et al ApJ 0004-637X 771 2 105 2013 105 Bernardi G., Zwart J. T. L., Price D. et al 2016 MNRAS 461 2847 10.1093/mnras/stw1499 Bernardi G., Zwart J. T. L., Price D. et al MNRAS 0035-8711 461 2016 2847 Bowman J. D. and Rogers A. E. E. 2010 Natur 468 796 10.1038/nature09601 Bowman J. D. and Rogers A. E. E. Natur 468 2010 796 Cheng C., Parsons A. R., Kolopanis M. et al 2018 ApJ 868 26 10.3847/1538-4357/aae833 Cheng C., Parsons A. R., Kolopanis M. et al ApJ 0004-637X 868 1 26 2018 26 Clark B. G. 1999 ASP Conf. Ser. 180, Synthesis Imaging in Radio Astronomy II ed G. B. Taylor, C. L. Carilli and R. A. Perley (San Francisco, CA: ASP) 1 Clark B. G. ed Taylor G. B., Carilli C. L. and Perley R. A. ASP Conf. Ser. 180, Synthesis Imaging in Radio Astronomy II 1999 1 Cotton W. D., Condon J. J., Perley R. A. et al 2004 Proc. SPIE 5489 180 10.1117/12.551298 Cotton W. D., Condon J. J., Perley R. A. et al Proc. SPIE 5489 2004 180 de Oliveira-Costa A., Tegmark M., Gaensler B. M. et al 2008 MNRAS 388 247 10.1111/j.1365-2966.2008.13376.x de Oliveira-Costa A., Tegmark M., Gaensler B. M. et al MNRAS 0035-8711 388 2008 247 DeBoer D. R., Parsons A. R., Aguirre J. E. et al 2017 PASP 129 045001 10.1088/1538-3873/129/974/045001 DeBoer D. R., Parsons A. R., Aguirre J. E. et al PASP 1538-3873 129 974 045001 2017 045001 Dillon J. S., Kohn S. A., Parsons A. R. et al 2018 MNRAS 477 5670 10.1093/mnras/sty1060 Dillon J. S., Kohn S. A., Parsons A. R. et al MNRAS 0035-8711 477 2018 5670 Dillon J. S., Liu A., Williams C. L. et al 2014 PhRvD 89 023002 10.1103/PhysRevD.89.023002 Dillon J. S., Liu A., Williams C. L. et al PhRvD 89 023002 2014 Dillon J. S., Neben A. R., Hewitt J. N. et al 2015 PhRvD 91 123011 10.1103/PhysRevD.91.123011 Dillon J. S., Neben A. R., Hewitt J. N. et al PhRvD 91 123011 2015 Efron B. and Tibshirani R. 1994 An Introduction to the Bootstrap (London: Taylor and Francis) Efron B. and Tibshirani R. An Introduction to the Bootstrap 1994 Furlanetto S. R., Oh S. P. and Briggs F. H. 2006 PhR 433 181 10.1016/j.physrep.2006.08.002 Furlanetto S. R., Oh S. P. and Briggs F. H. PhR 433 2006 181 Ghosh A., Bharadwaj S., Ali S. S. and Chengalur J. N. 2011 MNRAS 418 2584 10.1111/j.1365-2966.2011.19649.x Ghosh A., Bharadwaj S., Ali S. S. and Chengalur J. N. MNRAS 0035-8711 418 2011 2584 Górski K. M., Hivon E., Banday A. J. et al 2005 ApJ 622 759 10.1086/427976 Górski K. M., Hivon E., Banday A. J. et al ApJ 0004-637X 622 2 759 2005 759 Greig B., Mesinger A. and Pober J. C. 2016 MNRAS 455 4295 10.1093/mnras/stv2618 Greig B., Mesinger A. and Pober J. C. MNRAS 0035-8711 455 2016 4295 Hazelton B., Beardsley A., Pober J. et al 2017 HERA-Team/pyuvdata: Version 1.2 Zenodo, doi:10.5281/zenodo.1044022 Hazelton B., Beardsley A., Pober J. et al HERA-Team/pyuvdata: Version 1.2 2017 Högbom J. A. 1974 A&AS 15 417 Högbom J. A. A&AS 1286-4846 15 1974 417 Hurley-Walker N., Callingham J. R., Hancock P. J. et al 2017 MNRAS 464 1146 10.1093/mnras/stw2337 Hurley-Walker N., Callingham J. R., Hancock P. J. et al MNRAS 0035-8711 464 2017 1146 lglewicz B. and Hoaglin D. C. 1993 How to Detect and Handle Outliers ed P. Edward and F. Mykytka 16 lglewicz B. and Hoaglin D. C. ed Edward P. and Mykytka F. How to Detect and Handle Outliers 1993 16 Intema H. T., van der Tol S., Cotton W. D. et al 2009 A&A 501 1185 10.1051/0004-6361/200811094 Intema H. T., van der Tol S., Cotton W. D. et al A&A 0004-6361 501 2009 1185 Jacobs D. C., Hazelton B. J., Trott C. M. et al 2016 ApJ 825 114 10.3847/0004-637X/825/2/114 Jacobs D. C., Hazelton B. J., Trott C. M. et al ApJ 0004-637X 825 2 114 2016 114 Jacobs D. C., Parsons A. R., Aguirre J. E. et al 2013 ApJ 776 108 10.1088/0004-637X/776/2/108 Jacobs D. C., Parsons A. R., Aguirre J. E. et al ApJ 0004-637X 776 2 108 2013 108 Jacobs D. C., Pober J. C., Parsons A. R. et al 2015 ApJ 801 51 10.1088/0004-637X/801/1/51 Jacobs D. C., Pober J. C., Parsons A. R. et al ApJ 0004-637X 801 1 51 2015 51 Jones E., Oliphant T., Peterson P. et al 2001 SciPy: Open Source Scientific Tools for Python, version 1.2.1 http://www.scipy.org/ Jones E., Oliphant T., Peterson P. et al SciPy: Open Source Scientific Tools for Python, version 1.2.1 2001 Joseph R. C., Trott C. M. and Wayth R. B. 2018 AJ 156 285 10.3847/1538-3881/aaec0b Joseph R. C., Trott C. M. and Wayth R. B. AJ 1538-3881 156 6 285 2018 285 Kerrigan J. R., Pober J. C., Ali Z. S. et al 2018 ApJ 864 131 10.3847/1538-4357/aad8bb Kerrigan J. R., Pober J. C., Ali Z. S. et al ApJ 0004-637X 864 2 131 2018 131 Lanham A., Hazelton B., Jacobs D. et al 2019 JOSS 4 1234 10.21105/joss.01234 Lanham A., Hazelton B., Jacobs D. et al JOSS 1529-1227 4 2019 1234 Liu A. and Parsons A. R. 2016 MNRAS 457 1864 10.1093/mnras/stw071 Liu A. and Parsons A. R. MNRAS 0035-8711 457 2016 1864 Liu A., Parsons A. R. and Trott C. M. 2014a PhRvD 90 023018 10.1103/PhysRevD.90.023018 Liu A., Parsons A. R. and Trott C. M. PhRvD 90 023018 2014 Liu A., Parsons A. R. and Trott C. M. 2014b PhRvD 90 023019 10.1103/PhysRevD.90.023019 Liu A., Parsons A. R. and Trott C. M. PhRvD 90 023019 2014 Liu A., Tegmark M., Morrison S., Lutomirski A. and Zaldarriaga M. 2010 MNRAS 408 1029 10.1111/j.1365-2966.2010.17174.x Liu A., Tegmark M., Morrison S., Lutomirski A. and Zaldarriaga M. MNRAS 0035-8711 408 2010 1029 Loeb A. and Furlanetto S. R. 2013 MNRAS 408 1029 10.1111/j.1365-2966.2010.17174.x Loeb A. and Furlanetto S. R. MNRAS 0035-8711 408 2013 1029 McKinley B., Yang R., López-Caniego M. et al 2015 MNRAS 446 3478 10.1093/mnras/stu2310 McKinley B., Yang R., López-Caniego M. et al MNRAS 0035-8711 446 2015 3478 McMullin J. P., Waters B., Schiebel D., Young W. and Golap K. 2007 ASP Conf. Ser. 376, Astronomical Data Analysis Software and Systems XVI ed R. A Shaw, F. Hill and D. J. Bell (San Francisco, CA: ASP) 127 McMullin J. P., Waters B., Schiebel D., Young W. and Golap K. ed Shaw R. A, Hill F. and Bell D. J. ASP Conf. Ser. 376, Astronomical Data Analysis Software and Systems XVI 2007 127 Mellema G., Koopmans L. V. E., Abdalla F. A. et al 2013 ExA 36 235 10.1007/s10686-013-9334-5 Mellema G., Koopmans L. V. E., Abdalla F. A. et al ExA 1382-0176 36 2013 235 Mesinger A., Furlanetto S. and Cen R. 2011 MNRAS 411 955 10.1111/j.1365-2966.2010.17731.x Mesinger A., Furlanetto S. and Cen R. MNRAS 0035-8711 411 2011 955 Moore D. F., Aguirre J. E., Kohn S. A. et al 2017 ApJ 836 154 10.3847/1538-4357/836/2/154 Moore D. F., Aguirre J. E., Kohn S. A. et al ApJ 0004-637X 836 2 154 2017 154 Morales M. F. and Wyithe J. S. B. 2010 ARA&A 48 127 10.1146/annurev-astro-081309-130936 Morales M. F. and Wyithe J. S. B. ARA&A 0066-4146 48 2010 127 Mort B. J., Dulwich F., Salvini S., Adami K. Z. and Jones M. E. 2010 2010 IEEE Int. Symp. on Phased Array Systems and Technology (ARRAY) (Piscataway, NJ: IEEE) 690 10.1109/ARRAY.2010.5613289 Mort B. J., Dulwich F., Salvini S., Adami K. Z. and Jones M. E. 2010 IEEE Int. Symp. on Phased Array Systems and Technology (ARRAY) 2010 690 Oh S. P. 2001 ApJ 553 499 10.1086/320957 Oh S. P. ApJ 0004-637X 553 2 499 2001 499 Oliphant T. 2006 NumPy: A Guide to NumPy (USA: Trelgol Publishing) Oliphant T. NumPy: A Guide to NumPy 2006 Paciga G., Albert J. G., Bandura K. et al 2013 MNRAS 433 639 10.1093/mnras/stt753 Paciga G., Albert J. G., Bandura K. et al MNRAS 0035-8711 433 2013 639 Parsons A., Pober J., McQuinn M., Jacobs D. and Aguirre J. 2012a ApJ 753 81 10.1088/0004-637X/753/1/81 Parsons A., Pober J., McQuinn M., Jacobs D. and Aguirre J. ApJ 0004-637X 753 1 81 2012 81 Parsons A. R. and Backer D. C. 2009 AJ 138 219 10.1088/0004-6256/138/1/219 Parsons A. R. and Backer D. C. AJ 1538-3881 138 1 219 2009 219 Parsons A. R., Backer D. C., Foster G. S. et al 2010 AJ 139 1468 10.1088/0004-6256/139/4/1468 Parsons A. R., Backer D. C., Foster G. S. et al AJ 1538-3881 139 4 1468 2010 1468 Parsons A. R., Liu A., Aguirre J. E. et al 2014 ApJ 788 106 10.1088/0004-637X/788/2/106 Parsons A. R., Liu A., Aguirre J. E. et al ApJ 0004-637X 788 2 106 2014 106 Parsons A. R., Liu A., Ali Z. S. and Cheng C. 2016 ApJ 820 51 10.3847/0004-637X/820/1/51 Parsons A. R., Liu A., Ali Z. S. and Cheng C. ApJ 0004-637X 820 1 51 2016 51 Parsons A. R., Pober J. C., Aguirre J. E. et al 2012b ApJ 756 165 10.1088/0004-637X/756/2/165 Parsons A. R., Pober J. C., Aguirre J. E. et al ApJ 0004-637X 756 2 165 2012 165 Patil A. H., Yatawatta S., Koopmans L. V. E. et al 2017 ApJ 838 65 10.3847/1538-4357/aa63e7 Patil A. H., Yatawatta S., Koopmans L. V. E. et al ApJ 0004-637X 838 1 65 2017 65 Patra N., Subrahmanyan R., Sethi S., Udaya Shankar N. and Raghunathan A. 2015 ApJ 801 138 10.1088/0004-637X/801/2/138 Patra N., Subrahmanyan R., Sethi S., Udaya Shankar N. and Raghunathan A. ApJ 0004-637X 801 2 138 2015 138 Pober J. C., Ali Z. S., Parsons A. R. et al 2015 ApJ 809 62 10.1088/0004-637X/809/1/62 Pober J. C., Ali Z. S., Parsons A. R. et al ApJ 0004-637X 809 1 62 2015 62 Pober J. C., Hazelton B. J., Beardsley A. P. et al 2016 ApJ 819 8 10.3847/0004-637X/819/1/8 Pober J. C., Hazelton B. J., Beardsley A. P. et al ApJ 0004-637X 819 1 8 2016 8 Pober J. C., Liu A., Dillon J. S. et al 2014 ApJ 782 66 10.1088/0004-637X/782/2/66 Pober J. C., Liu A., Dillon J. S. et al ApJ 0004-637X 782 2 66 2014 66 Pober J. C., Parsons A. R., Aguirre J. E. et al 2013 ApJL 768 L36 10.1088/2041-8205/768/2/L36 Pober J. C., Parsons A. R., Aguirre J. E. et al ApJL 0004-637X 768 2013 L36 Pober J. C., Parsons A. R., Jacobs D. C. et al 2012 AJ 143 53 10.1088/0004-6256/143/2/53 Pober J. C., Parsons A. R., Jacobs D. C. et al AJ 1538-3881 143 2 53 2012 53 Pritchard J. R. and Loeb A. 2010 PhRvD 82 023006 10.1103/PhysRevD.82.023006 Pritchard J. R. and Loeb A. PhRvD 82 023006 2010 Rogers A. E. E. and Bowman J. D. 2008 AJ 136 641 10.1088/0004-6256/136/2/641 Rogers A. E. E. and Bowman J. D. AJ 1538-3881 136 2 641 2008 641 Santos M. G., Cooray A. and Knox L. 2005 ApJ 625 575 10.1086/429857 Santos M. G., Cooray A. and Knox L. ApJ 0004-637X 625 2 575 2005 575 Sokolowski M., Tremblay S. E., Wayth R. B. et al 2015 PASA 32 4 10.1017/pasa.2015.3 Sokolowski M., Tremblay S. E., Wayth R. B. et al PASA 1323-3580 32 2015 4 Sullivan I. S., Morales M. F., Hazelton B. J. et al 2012 ApJ 759 17 10.1088/0004-637X/759/1/17 Sullivan I. S., Morales M. F., Hazelton B. J. et al ApJ 0004-637X 759 1 17 2012 17 Thyagarajan N., Jacobs D. C., Bowman J. D. et al 2015a ApJL 807 L28 10.1088/2041-8205/807/2/L28 Thyagarajan N., Jacobs D. C., Bowman J. D. et al ApJL 0004-637X 807 2015 L28 Thyagarajan N., Jacobs D. C., Bowman J. D. et al 2015b ApJ 804 14 10.1088/0004-637X/804/1/14 Thyagarajan N., Jacobs D. C., Bowman J. D. et al ApJ 0004-637X 804 1 14 2015 14 Thyagarajan N., Kolopanis M., Jacobs D., Murray S. and Santoshmh 2019 PRISim: Precision Radio Interferometry Simulator (for Radio Astronomy Applications), 0.2-alpha 2 Zenodo, doi:10.5281/zenodo.2548117 Thyagarajan N., Kolopanis M., Jacobs D., Murray S. and Santoshmh PRISim: Precision Radio Interferometry Simulator (for Radio Astronomy Applications), 0.2-alpha 2019 2 Tingay S. J., Goeke R., Bowman J. D. et al 2013 PASA 30 7 10.1017/pasa.2012.007 Tingay S. J., Goeke R., Bowman J. D. et al PASA 1323-3580 30 2013 7 Voytek T. C., Natarajan A., Jáuregui García J. M., Peterson J. B. and López-Cruz O. 2014 ApJL 782 L9 10.1088/2041-8205/782/1/L9 Voytek T. C., Natarajan A., Jáuregui García J. M., Peterson J. B. and López-Cruz O. ApJL 0004-637X 782 2014 L9 Wayth R. B., Lenc E., Bell M. E. et al 2015 PASA 32 e025 10.1017/pasa.2015.26 Wayth R. B., Lenc E., Bell M. E. et al PASA 1323-3580 32 2015 e025 Yatawatta S., de Bruyn A. G., Brentjens M. A. et al 2013 A&A 550 A136 10.1051/0004-6361/201220874 Yatawatta S., de Bruyn A. G., Brentjens M. A. et al A&A 0004-6361 550 2013 A136 Zheng H., Tegmark M., Buza V. et al 2014 MNRAS 445 1084 10.1093/mnras/stu1773 Zheng H., Tegmark M., Buza V. et al MNRAS 0035-8711 445 2014 1084 Publisher Copyright: © 2019. The American Astronomical Society. All rights reserved.
PY - 2019/10/1
Y1 - 2019/10/1
N2 - We present limits on the 21 cm power spectrum from the Epoch of Reionization using data from the 64 antenna configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) analyzed through a power spectrum pipeline independent from previous PAPER analyses. Previously reported results from PAPER have been found to contain significant signal loss. Several lossy steps from previous PAPER pipelines have not been included in this analysis, namely delay-based foreground filtering, optimal fringe-rate filtering, and empirical covariance-based estimators. Steps that remain in common with previous analyses include redundant calibration and local sidereal time (LST) binning. The power spectra reported here are effectively the result of applying a linear Fourier transform analysis to the calibrated, LST-binned data. This analysis also uses more data than previous publications, including the complete available redshift range of z ∼ 7.5 to 11. In previous PAPER analyses, many power spectrum measurements were found to be detections of noncosmological power at levels of significance ranging from two to hundreds of times the theoretical noise. Here, excess power is examined using redundancy between baselines and power spectrum jackknives. The upper limits we find on the 21 cm power spectrum from reionization are (1500 mK)2, (1900 mK)2, (280mK)2, (200mK)2, (380mK)2, and (300mK)2 at redshifts z = 10.87, 9.93, 8.68, 8.37, 8.13, and 7.48, respectively. For reasons described in Cheng et al., these limits supersede all previous PAPER results.
AB - We present limits on the 21 cm power spectrum from the Epoch of Reionization using data from the 64 antenna configuration of the Donald C. Backer Precision Array for Probing the Epoch of Reionization (PAPER) analyzed through a power spectrum pipeline independent from previous PAPER analyses. Previously reported results from PAPER have been found to contain significant signal loss. Several lossy steps from previous PAPER pipelines have not been included in this analysis, namely delay-based foreground filtering, optimal fringe-rate filtering, and empirical covariance-based estimators. Steps that remain in common with previous analyses include redundant calibration and local sidereal time (LST) binning. The power spectra reported here are effectively the result of applying a linear Fourier transform analysis to the calibrated, LST-binned data. This analysis also uses more data than previous publications, including the complete available redshift range of z ∼ 7.5 to 11. In previous PAPER analyses, many power spectrum measurements were found to be detections of noncosmological power at levels of significance ranging from two to hundreds of times the theoretical noise. Here, excess power is examined using redundancy between baselines and power spectrum jackknives. The upper limits we find on the 21 cm power spectrum from reionization are (1500 mK)2, (1900 mK)2, (280mK)2, (200mK)2, (380mK)2, and (300mK)2 at redshifts z = 10.87, 9.93, 8.68, 8.37, 8.13, and 7.48, respectively. For reasons described in Cheng et al., these limits supersede all previous PAPER results.
KW - dark ages
KW - first stars
KW - reionization
UR - http://www.scopus.com/inward/record.url?scp=85074127513&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85074127513&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/ab3e3a
DO - 10.3847/1538-4357/ab3e3a
M3 - Article
AN - SCOPUS:85074127513
SN - 0004-637X
VL - 883
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 2
M1 - 133
ER -