A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites

M. Wadhwa, R. C.F. Lentz, H. Y. McSween, G. Crozaz

Research output: Contribution to journalArticlepeer-review

59 Scopus citations

Abstract

We present the results of a combined mineralogic-petrologic and ion microprobe study of two martian meteorites recently recovered in the Lybian Sahara, Dar al Gani 476 (DaG 476) and Dar al Gani 489 (DaG 489). Having resided in a hot desert environment for an extended time, DaG 476 and DaG 489 were subjected to terrestrial weathering that significantly altered their chemical composition. In particular, analyses of some of the silicates show light rare earth element (LREE)- enrichment resulting from terrestrial alteration. In situ measurement of trace element abundances in minerals allows us to identify areas unaffected by this contamination and, thereby, to infer the petrogenesis of these meteorites. No significant compositional differences between DaG 476 and DaG 489 were found, supporting the hypothesis that they belong to the same fall. These meteorites have characteristics in common with both basaltic and lherzolitic shergottites, possibly suggesting spatial and petrogenetic associations of these two types of lithologies on Mars. However, the compositions of Fe-Ti oxides and the size of Eu anomalies in the earliest-formed pyroxenes indicate that the two Saharan meteorites probably experienced more reducing crystallization conditions than other shergottites (with the exception of Queen Alexandra Range (QUE) 94201). As is the case for other shergottites, trace element microdistributions in minerals of the DaG martian meteorites indicate that closed-system crystal fractionation from a LREE-depleted parent magma dominated their crystallization history. Furthermore, rare earth element abundances in the orthopyroxene megacrysts are consistent with their origin as xenocrysts rather than phenocrysts.

Original languageEnglish (US)
Pages (from-to)195-208
Number of pages14
JournalMeteoritics and Planetary Science
Volume36
Issue number2
DOIs
StatePublished - Jan 1 2001
Externally publishedYes

ASJC Scopus subject areas

  • Geophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A petrologic and trace element study of Dar al Gani 476 and Dar al Gani 489: Twin meteorites with affinities to basaltic and lherzolitic shergottites'. Together they form a unique fingerprint.

Cite this