TY - GEN
T1 - A novel online Variance Based Instance Selection (VBIS) method for efficient atypicality detection in chest radiographs
AU - Alzubaidi, Mohammad
AU - Balasubramanian, Vineeth
AU - Patel, Ameet
AU - Panchanathan, Sethuraman
AU - Black, John A.
PY - 2012/5/14
Y1 - 2012/5/14
N2 - Chest radiographs are complex, heterogeneous medical images that depict many different types of tissues, and many different types of abnormalities. A radiologist develops a sense of what visual textures are typical for each anatomic region within chest radiographs by viewing a large set of "normal" radiographs over a period of years. As a result, an expert radiologist is able to readily detect atypical features. In our previous research, we modeled this type of learning by (1) collecting a large set of "normal" chest radiographs, (2) extracting local textural and contour features from anatomical regions within these radiographs, in the form of high-dimensional feature vectors, (3) using a distance-based transductive machine learning method to learn what it typical for each anatomical region, and (4) computing atypicality scores for the anatomical regions in test radiographs. That research demonstrated that the transductive One-Nearest-Neighbor (1NN) method was effective for identifying atypical regions in chest radiographs. However, the large set of training instances (and the need to compute a distance to each of these instances in a high dimensional space) made the transductive method computationally expensive. This paper discusses a novel online Variance Based Instance Selection (VBIS) method for use with the Nearest Neighbor classifier, that (1) substantially reduced the computational cost of the transductive 1NN method, while maintaining a high level of effectiveness in identifying regions of chest radiographs with atypical content, and (2) allowed the incremental incorporation of training data from new informative chest radiographs as they are encountered in day-to-day clinical work.
AB - Chest radiographs are complex, heterogeneous medical images that depict many different types of tissues, and many different types of abnormalities. A radiologist develops a sense of what visual textures are typical for each anatomic region within chest radiographs by viewing a large set of "normal" radiographs over a period of years. As a result, an expert radiologist is able to readily detect atypical features. In our previous research, we modeled this type of learning by (1) collecting a large set of "normal" chest radiographs, (2) extracting local textural and contour features from anatomical regions within these radiographs, in the form of high-dimensional feature vectors, (3) using a distance-based transductive machine learning method to learn what it typical for each anatomical region, and (4) computing atypicality scores for the anatomical regions in test radiographs. That research demonstrated that the transductive One-Nearest-Neighbor (1NN) method was effective for identifying atypical regions in chest radiographs. However, the large set of training instances (and the need to compute a distance to each of these instances in a high dimensional space) made the transductive method computationally expensive. This paper discusses a novel online Variance Based Instance Selection (VBIS) method for use with the Nearest Neighbor classifier, that (1) substantially reduced the computational cost of the transductive 1NN method, while maintaining a high level of effectiveness in identifying regions of chest radiographs with atypical content, and (2) allowed the incremental incorporation of training data from new informative chest radiographs as they are encountered in day-to-day clinical work.
KW - Anomaly detection
KW - Atypicality detection
KW - Chest x-rays
KW - Computer aided diagnosis
KW - Instance selection
KW - Machine learning
KW - Nearest neighbor
KW - Radiology training
UR - http://www.scopus.com/inward/record.url?scp=84860754372&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84860754372&partnerID=8YFLogxK
U2 - 10.1117/12.911154
DO - 10.1117/12.911154
M3 - Conference contribution
AN - SCOPUS:84860754372
SN - 9780819489630
T3 - Progress in Biomedical Optics and Imaging - Proceedings of SPIE
BT - Medical Imaging 2012
T2 - Medical Imaging 2012: Image Processing
Y2 - 6 February 2012 through 9 February 2012
ER -