A novel climate-specific field accelerated testing of PV modules

Sai Tatapudi, Joseph Kuitche, Govindasamy Tamizhmani

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

Failure modes and degradation rates of PV modules in a specific climate are primarily dictated by the module design and field-specific climate stressors such as temperature, UV and humidity. To identify the long-term design issues and predict lifetime of PV modules, the plant owners, investors and researchers typically utilize long-term indoor accelerated tests such as extended/modified IEC 61215 tests. Though the indoor accelerated tests can appropriately be designed for the environmental stressors of a specific climate, several challenges are encountered and they include: capital and operating costs of multiple walk-in environmental and weathering chambers for commercial size modules; only statistically insignificant number of commercial modules can be tested at a time due to size limitation of the chambers, and; multiple climate-specific temperatures and multiple humidity profiles used in the long-term accelerated tests prevent performing conventional IEC 61215 test profiles inside the same chamber. All the above-mentioned challenges can be adequately addressed using a novel climate-specific field accelerated testing setup presented in this work. This test program has been designed specifically for the hot-dry desert climate where the environmental stressors are temperature and UV with little or no influence from humidity. This program can easily be modified for the other climatic conditions, e.g. test setup for a hot-humid condition can include temperature, UV and humidity. In the current outdoor accelerated test program for hot-dry desert climate, the temperature acceleration is achieved by inserting heavy thermal insulators on the backside of the modules and the UV acceleration at higher operating temperatures are achieved by using a V-trough solar concentrator on the thermally insulated PV modules installed on a 2-axis tracker. An acceleration factor of about 12-15 is expected depending on the activation energy of the climate-specific degradation mechanism, e.g. encapsulant browning and solder bond degradation.

Original languageEnglish (US)
Title of host publicationNew Concepts in Solar and Thermal Radiation Conversion and Reliability
EditorsJeremy N. Munday, Michael D. Kempe, Peter Bermel
PublisherSPIE
Volume10759
ISBN (Electronic)9781510620896
DOIs
StatePublished - Jan 1 2018
EventNew Concepts in Solar and Thermal Radiation Conversion and Reliability 2018 - San Diego, United States
Duration: Aug 19 2018Aug 21 2018

Other

OtherNew Concepts in Solar and Thermal Radiation Conversion and Reliability 2018
CountryUnited States
CitySan Diego
Period8/19/188/21/18

Fingerprint

Accelerated Testing
Climate
climate
modules
Module
Atmospheric humidity
Humidity
Testing
humidity
Degradation
Temperature
chambers
deserts
degradation
Solar concentrators
Weathering
temperature
Operating costs
Soldering alloys
Concentrator

Keywords

  • Accelerated testing
  • Climate-specific field accelerated testing
  • Predict lifetime

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Computer Science Applications
  • Applied Mathematics
  • Electrical and Electronic Engineering

Cite this

Tatapudi, S., Kuitche, J., & Tamizhmani, G. (2018). A novel climate-specific field accelerated testing of PV modules. In J. N. Munday, M. D. Kempe, & P. Bermel (Eds.), New Concepts in Solar and Thermal Radiation Conversion and Reliability (Vol. 10759). [1075908] SPIE. https://doi.org/10.1117/12.2326699

A novel climate-specific field accelerated testing of PV modules. / Tatapudi, Sai; Kuitche, Joseph; Tamizhmani, Govindasamy.

New Concepts in Solar and Thermal Radiation Conversion and Reliability. ed. / Jeremy N. Munday; Michael D. Kempe; Peter Bermel. Vol. 10759 SPIE, 2018. 1075908.

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Tatapudi, S, Kuitche, J & Tamizhmani, G 2018, A novel climate-specific field accelerated testing of PV modules. in JN Munday, MD Kempe & P Bermel (eds), New Concepts in Solar and Thermal Radiation Conversion and Reliability. vol. 10759, 1075908, SPIE, New Concepts in Solar and Thermal Radiation Conversion and Reliability 2018, San Diego, United States, 8/19/18. https://doi.org/10.1117/12.2326699
Tatapudi S, Kuitche J, Tamizhmani G. A novel climate-specific field accelerated testing of PV modules. In Munday JN, Kempe MD, Bermel P, editors, New Concepts in Solar and Thermal Radiation Conversion and Reliability. Vol. 10759. SPIE. 2018. 1075908 https://doi.org/10.1117/12.2326699
Tatapudi, Sai ; Kuitche, Joseph ; Tamizhmani, Govindasamy. / A novel climate-specific field accelerated testing of PV modules. New Concepts in Solar and Thermal Radiation Conversion and Reliability. editor / Jeremy N. Munday ; Michael D. Kempe ; Peter Bermel. Vol. 10759 SPIE, 2018.
@inproceedings{f6d1a99c59164bc8b93a7c3bbfa84ecc,
title = "A novel climate-specific field accelerated testing of PV modules",
abstract = "Failure modes and degradation rates of PV modules in a specific climate are primarily dictated by the module design and field-specific climate stressors such as temperature, UV and humidity. To identify the long-term design issues and predict lifetime of PV modules, the plant owners, investors and researchers typically utilize long-term indoor accelerated tests such as extended/modified IEC 61215 tests. Though the indoor accelerated tests can appropriately be designed for the environmental stressors of a specific climate, several challenges are encountered and they include: capital and operating costs of multiple walk-in environmental and weathering chambers for commercial size modules; only statistically insignificant number of commercial modules can be tested at a time due to size limitation of the chambers, and; multiple climate-specific temperatures and multiple humidity profiles used in the long-term accelerated tests prevent performing conventional IEC 61215 test profiles inside the same chamber. All the above-mentioned challenges can be adequately addressed using a novel climate-specific field accelerated testing setup presented in this work. This test program has been designed specifically for the hot-dry desert climate where the environmental stressors are temperature and UV with little or no influence from humidity. This program can easily be modified for the other climatic conditions, e.g. test setup for a hot-humid condition can include temperature, UV and humidity. In the current outdoor accelerated test program for hot-dry desert climate, the temperature acceleration is achieved by inserting heavy thermal insulators on the backside of the modules and the UV acceleration at higher operating temperatures are achieved by using a V-trough solar concentrator on the thermally insulated PV modules installed on a 2-axis tracker. An acceleration factor of about 12-15 is expected depending on the activation energy of the climate-specific degradation mechanism, e.g. encapsulant browning and solder bond degradation.",
keywords = "Accelerated testing, Climate-specific field accelerated testing, Predict lifetime",
author = "Sai Tatapudi and Joseph Kuitche and Govindasamy Tamizhmani",
year = "2018",
month = "1",
day = "1",
doi = "10.1117/12.2326699",
language = "English (US)",
volume = "10759",
editor = "Munday, {Jeremy N.} and Kempe, {Michael D.} and Peter Bermel",
booktitle = "New Concepts in Solar and Thermal Radiation Conversion and Reliability",
publisher = "SPIE",

}

TY - GEN

T1 - A novel climate-specific field accelerated testing of PV modules

AU - Tatapudi, Sai

AU - Kuitche, Joseph

AU - Tamizhmani, Govindasamy

PY - 2018/1/1

Y1 - 2018/1/1

N2 - Failure modes and degradation rates of PV modules in a specific climate are primarily dictated by the module design and field-specific climate stressors such as temperature, UV and humidity. To identify the long-term design issues and predict lifetime of PV modules, the plant owners, investors and researchers typically utilize long-term indoor accelerated tests such as extended/modified IEC 61215 tests. Though the indoor accelerated tests can appropriately be designed for the environmental stressors of a specific climate, several challenges are encountered and they include: capital and operating costs of multiple walk-in environmental and weathering chambers for commercial size modules; only statistically insignificant number of commercial modules can be tested at a time due to size limitation of the chambers, and; multiple climate-specific temperatures and multiple humidity profiles used in the long-term accelerated tests prevent performing conventional IEC 61215 test profiles inside the same chamber. All the above-mentioned challenges can be adequately addressed using a novel climate-specific field accelerated testing setup presented in this work. This test program has been designed specifically for the hot-dry desert climate where the environmental stressors are temperature and UV with little or no influence from humidity. This program can easily be modified for the other climatic conditions, e.g. test setup for a hot-humid condition can include temperature, UV and humidity. In the current outdoor accelerated test program for hot-dry desert climate, the temperature acceleration is achieved by inserting heavy thermal insulators on the backside of the modules and the UV acceleration at higher operating temperatures are achieved by using a V-trough solar concentrator on the thermally insulated PV modules installed on a 2-axis tracker. An acceleration factor of about 12-15 is expected depending on the activation energy of the climate-specific degradation mechanism, e.g. encapsulant browning and solder bond degradation.

AB - Failure modes and degradation rates of PV modules in a specific climate are primarily dictated by the module design and field-specific climate stressors such as temperature, UV and humidity. To identify the long-term design issues and predict lifetime of PV modules, the plant owners, investors and researchers typically utilize long-term indoor accelerated tests such as extended/modified IEC 61215 tests. Though the indoor accelerated tests can appropriately be designed for the environmental stressors of a specific climate, several challenges are encountered and they include: capital and operating costs of multiple walk-in environmental and weathering chambers for commercial size modules; only statistically insignificant number of commercial modules can be tested at a time due to size limitation of the chambers, and; multiple climate-specific temperatures and multiple humidity profiles used in the long-term accelerated tests prevent performing conventional IEC 61215 test profiles inside the same chamber. All the above-mentioned challenges can be adequately addressed using a novel climate-specific field accelerated testing setup presented in this work. This test program has been designed specifically for the hot-dry desert climate where the environmental stressors are temperature and UV with little or no influence from humidity. This program can easily be modified for the other climatic conditions, e.g. test setup for a hot-humid condition can include temperature, UV and humidity. In the current outdoor accelerated test program for hot-dry desert climate, the temperature acceleration is achieved by inserting heavy thermal insulators on the backside of the modules and the UV acceleration at higher operating temperatures are achieved by using a V-trough solar concentrator on the thermally insulated PV modules installed on a 2-axis tracker. An acceleration factor of about 12-15 is expected depending on the activation energy of the climate-specific degradation mechanism, e.g. encapsulant browning and solder bond degradation.

KW - Accelerated testing

KW - Climate-specific field accelerated testing

KW - Predict lifetime

UR - http://www.scopus.com/inward/record.url?scp=85056901851&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=85056901851&partnerID=8YFLogxK

U2 - 10.1117/12.2326699

DO - 10.1117/12.2326699

M3 - Conference contribution

VL - 10759

BT - New Concepts in Solar and Thermal Radiation Conversion and Reliability

A2 - Munday, Jeremy N.

A2 - Kempe, Michael D.

A2 - Bermel, Peter

PB - SPIE

ER -