TY - JOUR
T1 - A note on bounds on the minimum area of convex lattice polygons
AU - Colbourn, Charles J.
AU - Simpson, R. J.
PY - 1992/4
Y1 - 1992/4
N2 - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].
AB - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].
UR - http://www.scopus.com/inward/record.url?scp=84971790181&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84971790181&partnerID=8YFLogxK
U2 - 10.1017/S0004972700030094
DO - 10.1017/S0004972700030094
M3 - Article
AN - SCOPUS:84971790181
VL - 45
SP - 237
EP - 240
JO - Bulletin of the Australian Mathematical Society
JF - Bulletin of the Australian Mathematical Society
SN - 0004-9727
IS - 2
ER -