A note on bounds on the minimum area of convex lattice polygons

Charles Colbourn, R. J. Simpson

Research output: Contribution to journalArticle

5 Citations (Scopus)

Abstract

The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

Original languageEnglish (US)
Pages (from-to)237-240
Number of pages4
JournalBulletin of the Australian Mathematical Society
Volume45
Issue number2
DOIs
StatePublished - 1992
Externally publishedYes

Fingerprint

Polygon

ASJC Scopus subject areas

  • Mathematics(all)

Cite this

A note on bounds on the minimum area of convex lattice polygons. / Colbourn, Charles; Simpson, R. J.

In: Bulletin of the Australian Mathematical Society, Vol. 45, No. 2, 1992, p. 237-240.

Research output: Contribution to journalArticle

@article{2d7a64963bdf41c4b98fba8ea2663b37,
title = "A note on bounds on the minimum area of convex lattice polygons",
abstract = "The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].",
author = "Charles Colbourn and Simpson, {R. J.}",
year = "1992",
doi = "10.1017/S0004972700030094",
language = "English (US)",
volume = "45",
pages = "237--240",
journal = "Bulletin of the Australian Mathematical Society",
issn = "0004-9727",
publisher = "Cambridge University Press",
number = "2",

}

TY - JOUR

T1 - A note on bounds on the minimum area of convex lattice polygons

AU - Colbourn, Charles

AU - Simpson, R. J.

PY - 1992

Y1 - 1992

N2 - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

AB - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

UR - http://www.scopus.com/inward/record.url?scp=84971790181&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971790181&partnerID=8YFLogxK

U2 - 10.1017/S0004972700030094

DO - 10.1017/S0004972700030094

M3 - Article

AN - SCOPUS:84971790181

VL - 45

SP - 237

EP - 240

JO - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 2

ER -