### Abstract

The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv^{3} + o(v^{3}), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

Original language | English (US) |
---|---|

Pages (from-to) | 237-240 |

Number of pages | 4 |

Journal | Bulletin of the Australian Mathematical Society |

Volume | 45 |

Issue number | 2 |

DOIs | |

State | Published - 1992 |

Externally published | Yes |

### Fingerprint

### ASJC Scopus subject areas

- Mathematics(all)

### Cite this

*Bulletin of the Australian Mathematical Society*,

*45*(2), 237-240. https://doi.org/10.1017/S0004972700030094

**A note on bounds on the minimum area of convex lattice polygons.** / Colbourn, Charles; Simpson, R. J.

Research output: Contribution to journal › Article

*Bulletin of the Australian Mathematical Society*, vol. 45, no. 2, pp. 237-240. https://doi.org/10.1017/S0004972700030094

}

TY - JOUR

T1 - A note on bounds on the minimum area of convex lattice polygons

AU - Colbourn, Charles

AU - Simpson, R. J.

PY - 1992

Y1 - 1992

N2 - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

AB - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

UR - http://www.scopus.com/inward/record.url?scp=84971790181&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971790181&partnerID=8YFLogxK

U2 - 10.1017/S0004972700030094

DO - 10.1017/S0004972700030094

M3 - Article

AN - SCOPUS:84971790181

VL - 45

SP - 237

EP - 240

JO - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 2

ER -