TY - JOUR

T1 - A note on bounds on the minimum area of convex lattice polygons

AU - Colbourn, Charles J.

AU - Simpson, R. J.

PY - 1992/4

Y1 - 1992/4

N2 - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

AB - The minimum area a(v) of a v–sided convex lattice polygon is known to satisfy [formula omitted]. We conjecture that a(v) = cv3 + o(v3), for c a constant; we prove that [formula omitted], and that for some positive constant c[formula omitted].

UR - http://www.scopus.com/inward/record.url?scp=84971790181&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84971790181&partnerID=8YFLogxK

U2 - 10.1017/S0004972700030094

DO - 10.1017/S0004972700030094

M3 - Article

AN - SCOPUS:84971790181

VL - 45

SP - 237

EP - 240

JO - Bulletin of the Australian Mathematical Society

JF - Bulletin of the Australian Mathematical Society

SN - 0004-9727

IS - 2

ER -