A multitask deep learning method in simultaneously predicting occult invasive disease in ductal carcinoma in-situ and segmenting microcalcifications in mammography

Rui Hou, Lars J. Grimm, MacIej A. Mazurowski, Jeffrey R. Marks, Lorraine M. King, Carlo C. Maley, E. Shelley Hwang, Joseph Y. Lo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

Abstract

We proposed a two-branch multitask learning convolutional neural network to solve two different but related tasks at the same time. Our main task is to predict occult invasive disease in biopsy proven Ductal Carcinoma in-situ (DCIS), with an auxiliary task of segmenting microcalcifications (MCs). In this study, we collected digital mammography from 604 patients, 400 of which were DCIS. The model used patches with size of 512×512 extracted within a radiologist masked ROIs as input, with outputs including noisy MC segmentations obtained from our previous algorithms, and classification labels from final diagnosis at patients' definite surgery. We utilized a deep multitask model by combining both Unet segmentation networks and prediction classification networks, by sharing first several convolutional layers. The model achieved a patch-based ROC-AUC of 0.69, with a case-based ROC-AUC of 0.61. Segmentation results achieved a dice coefficient of 0.49.

Original languageEnglish (US)
Title of host publicationMedical Imaging 2020
Subtitle of host publicationComputer-Aided Diagnosis
EditorsHorst K. Hahn, Maciej A. Mazurowski
PublisherSPIE
ISBN (Electronic)9781510633957
DOIs
StatePublished - 2020
EventMedical Imaging 2020: Computer-Aided Diagnosis - Houston, United States
Duration: Feb 16 2020Feb 19 2020

Publication series

NameProgress in Biomedical Optics and Imaging - Proceedings of SPIE
Volume11314
ISSN (Print)1605-7422

Conference

ConferenceMedical Imaging 2020: Computer-Aided Diagnosis
Country/TerritoryUnited States
CityHouston
Period2/16/202/19/20

Keywords

  • classification
  • ductal carcinoma in-situ
  • invasive breast cancer
  • multitask learning
  • segmentation.

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Biomaterials
  • Atomic and Molecular Physics, and Optics
  • Radiology Nuclear Medicine and imaging

Fingerprint

Dive into the research topics of 'A multitask deep learning method in simultaneously predicting occult invasive disease in ductal carcinoma in-situ and segmenting microcalcifications in mammography'. Together they form a unique fingerprint.

Cite this