A monatomic system with a liquid-liquid critical point and two distinct glassy states

Limei Xu, Sergey V. Buldyrev, Nicolas Giovambattista, Charles Angell, H. Eugene Stanley

Research output: Contribution to journalArticle

69 Citations (Scopus)

Abstract

We study the glass transition (GT) in a model system that exhibits the presence of more than one liquid or glassy state ("polyamorphism") using molecular dynamics simulations. We study the Jagla model [E. A. Jagla, J. Chem. Phys. 111, 8980 (1999)], a two-scale spherically symmetric ramp potential with both attractive and repulsive interactions. The Jagla model is particularly interesting since, depending on its parametrization, it predicts two phases ("polyamorphism") not only in the glassy state but also in equilibrium as a liquid-liquid phase transition (LLPT). The Jagla model may also be useful in understanding a recent observation of polyamorphism in metallic glasses containing cerium. We use a parametrization for which crystallization can be avoided and the GT and LLPT are clearly separated, providing a unique opportunity to study the effects of the LLPT on the GT. We follow the experimental protocol employed in the classical differential scanning calorimetry experiments used to characterize the GT, cooling and heating the system through the GT and calculating the constant-pressure specific heat CP and the thermal expansion coefficient αP. At pressures below and well above the LLPT, the same basic GT phenomenology of metallic glasses is observed, i.e., a single peak in CP (typical of ergodicity restoration) occurs upon heating across the GT. At pressures above the LLPT, a second peak in CP develops at higher temperature above the GT. This second peak in CP arises from the presence of a Widom line TW defined as the locus of maximum correlation length in the one-phase region above the liquid-liquid critical point (LLCP). The behavior of αP is different across the GT and Widom line. Near the GT temperature Tg, αP displays a small peak upon heating, which makes a negligible contribution to the CP peak. On the other hand, near TW, αP displays a much larger peak, which makes a substantial contribution to the CP peak at higher temperature. We find that Tg is almost independent of pressure for each of the two coexisting liquids, but shows an apparent discontinuity upon crossing the LLPT line, to a lower value for the higher-entropy phase. We compare the entropies of both phases, and the corresponding temperature dependencies, with those of the crystal phase. We also study the dependence of the GT on heating rate and find that for pressures below the LLCP, slow heating results in crystallization, as occurs in laboratory experiments. Regarding the thermal expansion properties of the Jagla model, we study the interplay of the density minimum recently observed in confined water and the GT.

Original languageEnglish (US)
Article number054505
JournalJournal of Chemical Physics
Volume130
Issue number5
DOIs
StatePublished - 2009

Fingerprint

critical point
Liquids
Glass transition
liquids
glass
liquid phases
Phase transitions
heating
Heating
Metallic glass
metallic glasses
Crystallization
thermal expansion
Thermal expansion
Entropy
crystallization
entropy
Cerium
loci
ramps

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physical and Theoretical Chemistry

Cite this

A monatomic system with a liquid-liquid critical point and two distinct glassy states. / Xu, Limei; Buldyrev, Sergey V.; Giovambattista, Nicolas; Angell, Charles; Stanley, H. Eugene.

In: Journal of Chemical Physics, Vol. 130, No. 5, 054505, 2009.

Research output: Contribution to journalArticle

Xu, Limei ; Buldyrev, Sergey V. ; Giovambattista, Nicolas ; Angell, Charles ; Stanley, H. Eugene. / A monatomic system with a liquid-liquid critical point and two distinct glassy states. In: Journal of Chemical Physics. 2009 ; Vol. 130, No. 5.
@article{5b34357861aa427caeec88dea66bf2c9,
title = "A monatomic system with a liquid-liquid critical point and two distinct glassy states",
abstract = "We study the glass transition (GT) in a model system that exhibits the presence of more than one liquid or glassy state ({"}polyamorphism{"}) using molecular dynamics simulations. We study the Jagla model [E. A. Jagla, J. Chem. Phys. 111, 8980 (1999)], a two-scale spherically symmetric ramp potential with both attractive and repulsive interactions. The Jagla model is particularly interesting since, depending on its parametrization, it predicts two phases ({"}polyamorphism{"}) not only in the glassy state but also in equilibrium as a liquid-liquid phase transition (LLPT). The Jagla model may also be useful in understanding a recent observation of polyamorphism in metallic glasses containing cerium. We use a parametrization for which crystallization can be avoided and the GT and LLPT are clearly separated, providing a unique opportunity to study the effects of the LLPT on the GT. We follow the experimental protocol employed in the classical differential scanning calorimetry experiments used to characterize the GT, cooling and heating the system through the GT and calculating the constant-pressure specific heat CP and the thermal expansion coefficient αP. At pressures below and well above the LLPT, the same basic GT phenomenology of metallic glasses is observed, i.e., a single peak in CP (typical of ergodicity restoration) occurs upon heating across the GT. At pressures above the LLPT, a second peak in CP develops at higher temperature above the GT. This second peak in CP arises from the presence of a Widom line TW defined as the locus of maximum correlation length in the one-phase region above the liquid-liquid critical point (LLCP). The behavior of αP is different across the GT and Widom line. Near the GT temperature Tg, αP displays a small peak upon heating, which makes a negligible contribution to the CP peak. On the other hand, near TW, αP displays a much larger peak, which makes a substantial contribution to the CP peak at higher temperature. We find that Tg is almost independent of pressure for each of the two coexisting liquids, but shows an apparent discontinuity upon crossing the LLPT line, to a lower value for the higher-entropy phase. We compare the entropies of both phases, and the corresponding temperature dependencies, with those of the crystal phase. We also study the dependence of the GT on heating rate and find that for pressures below the LLCP, slow heating results in crystallization, as occurs in laboratory experiments. Regarding the thermal expansion properties of the Jagla model, we study the interplay of the density minimum recently observed in confined water and the GT.",
author = "Limei Xu and Buldyrev, {Sergey V.} and Nicolas Giovambattista and Charles Angell and Stanley, {H. Eugene}",
year = "2009",
doi = "10.1063/1.3043665",
language = "English (US)",
volume = "130",
journal = "Journal of Chemical Physics",
issn = "0021-9606",
publisher = "American Institute of Physics Publising LLC",
number = "5",

}

TY - JOUR

T1 - A monatomic system with a liquid-liquid critical point and two distinct glassy states

AU - Xu, Limei

AU - Buldyrev, Sergey V.

AU - Giovambattista, Nicolas

AU - Angell, Charles

AU - Stanley, H. Eugene

PY - 2009

Y1 - 2009

N2 - We study the glass transition (GT) in a model system that exhibits the presence of more than one liquid or glassy state ("polyamorphism") using molecular dynamics simulations. We study the Jagla model [E. A. Jagla, J. Chem. Phys. 111, 8980 (1999)], a two-scale spherically symmetric ramp potential with both attractive and repulsive interactions. The Jagla model is particularly interesting since, depending on its parametrization, it predicts two phases ("polyamorphism") not only in the glassy state but also in equilibrium as a liquid-liquid phase transition (LLPT). The Jagla model may also be useful in understanding a recent observation of polyamorphism in metallic glasses containing cerium. We use a parametrization for which crystallization can be avoided and the GT and LLPT are clearly separated, providing a unique opportunity to study the effects of the LLPT on the GT. We follow the experimental protocol employed in the classical differential scanning calorimetry experiments used to characterize the GT, cooling and heating the system through the GT and calculating the constant-pressure specific heat CP and the thermal expansion coefficient αP. At pressures below and well above the LLPT, the same basic GT phenomenology of metallic glasses is observed, i.e., a single peak in CP (typical of ergodicity restoration) occurs upon heating across the GT. At pressures above the LLPT, a second peak in CP develops at higher temperature above the GT. This second peak in CP arises from the presence of a Widom line TW defined as the locus of maximum correlation length in the one-phase region above the liquid-liquid critical point (LLCP). The behavior of αP is different across the GT and Widom line. Near the GT temperature Tg, αP displays a small peak upon heating, which makes a negligible contribution to the CP peak. On the other hand, near TW, αP displays a much larger peak, which makes a substantial contribution to the CP peak at higher temperature. We find that Tg is almost independent of pressure for each of the two coexisting liquids, but shows an apparent discontinuity upon crossing the LLPT line, to a lower value for the higher-entropy phase. We compare the entropies of both phases, and the corresponding temperature dependencies, with those of the crystal phase. We also study the dependence of the GT on heating rate and find that for pressures below the LLCP, slow heating results in crystallization, as occurs in laboratory experiments. Regarding the thermal expansion properties of the Jagla model, we study the interplay of the density minimum recently observed in confined water and the GT.

AB - We study the glass transition (GT) in a model system that exhibits the presence of more than one liquid or glassy state ("polyamorphism") using molecular dynamics simulations. We study the Jagla model [E. A. Jagla, J. Chem. Phys. 111, 8980 (1999)], a two-scale spherically symmetric ramp potential with both attractive and repulsive interactions. The Jagla model is particularly interesting since, depending on its parametrization, it predicts two phases ("polyamorphism") not only in the glassy state but also in equilibrium as a liquid-liquid phase transition (LLPT). The Jagla model may also be useful in understanding a recent observation of polyamorphism in metallic glasses containing cerium. We use a parametrization for which crystallization can be avoided and the GT and LLPT are clearly separated, providing a unique opportunity to study the effects of the LLPT on the GT. We follow the experimental protocol employed in the classical differential scanning calorimetry experiments used to characterize the GT, cooling and heating the system through the GT and calculating the constant-pressure specific heat CP and the thermal expansion coefficient αP. At pressures below and well above the LLPT, the same basic GT phenomenology of metallic glasses is observed, i.e., a single peak in CP (typical of ergodicity restoration) occurs upon heating across the GT. At pressures above the LLPT, a second peak in CP develops at higher temperature above the GT. This second peak in CP arises from the presence of a Widom line TW defined as the locus of maximum correlation length in the one-phase region above the liquid-liquid critical point (LLCP). The behavior of αP is different across the GT and Widom line. Near the GT temperature Tg, αP displays a small peak upon heating, which makes a negligible contribution to the CP peak. On the other hand, near TW, αP displays a much larger peak, which makes a substantial contribution to the CP peak at higher temperature. We find that Tg is almost independent of pressure for each of the two coexisting liquids, but shows an apparent discontinuity upon crossing the LLPT line, to a lower value for the higher-entropy phase. We compare the entropies of both phases, and the corresponding temperature dependencies, with those of the crystal phase. We also study the dependence of the GT on heating rate and find that for pressures below the LLCP, slow heating results in crystallization, as occurs in laboratory experiments. Regarding the thermal expansion properties of the Jagla model, we study the interplay of the density minimum recently observed in confined water and the GT.

UR - http://www.scopus.com/inward/record.url?scp=59949090369&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=59949090369&partnerID=8YFLogxK

U2 - 10.1063/1.3043665

DO - 10.1063/1.3043665

M3 - Article

C2 - 19206982

AN - SCOPUS:59949090369

VL - 130

JO - Journal of Chemical Physics

JF - Journal of Chemical Physics

SN - 0021-9606

IS - 5

M1 - 054505

ER -