Abstract
A trichromophoric molecule consisting of a porphyrin linked to both a dihydropyrene and a dihydroindolizinetype photochrome, in combination with a third harmonic generating crystal, functions as a 1:2 digital demultiplexer with photonic inputs and outputs. Each of the two photochromes may be cycled independently between two metastable forms, leading to four photoisomers, three of which are used in the demultiplexer. These isomers interact photochemically with the porphyrin in order to yield the demultiplexer function. With the address input (1064-nm light) turned off, one output of the device (porphyrin fluorescence) tracks the state of the data input (532-nm light). When the address input is turned on, the second output (absorbance at 572 nm) tracks the state of the data input, while the first output remains off. The demultiplexer does not require chemical or electrical inputs, and can cycle through its operational sequences multiple times.
Original language | English (US) |
---|---|
Pages (from-to) | 14274-14278 |
Number of pages | 5 |
Journal | Journal of Physical Chemistry C |
Volume | 111 |
Issue number | 38 |
DOIs | |
State | Published - Sep 27 2007 |
ASJC Scopus subject areas
- Electronic, Optical and Magnetic Materials
- Energy(all)
- Physical and Theoretical Chemistry
- Surfaces, Coatings and Films