TY - GEN
T1 - A model-based feed-forward controller scheme for accurate chilled water temperature control of inlet guide vane centrifugal chillers
AU - Jia, Yongzhong
AU - Reddy, T. Agami
PY - 2002/1/1
Y1 - 2002/1/1
N2 - Capacity control in most commercial centrifugal chillers is achieved by inlet guide vanes, which are activated by the leaving chilled water temperature sensor. Due to mechanical reasons, vane control is done discretely, and not continuously. The control module compares the value provided by the temperature sensor to pre-set control band values, and if those bands are exceeded, it sends a signal to the vane control motor to adjust the vane position by one step that could be upwards or downwards. The advantage of this type of discrete control method is its simplicity. Normally, the accuracy in the outlet chilled water temperature is of the order of 0.5°C, which is acceptable for normal cooling plants such as used in office buildings. However, there are applications such as in pharmaceutical processes, mechanics labs, or instances in chemical processes where more accurate control is required (sometimes as low as 0.05°C). This paper proposes a simple method to achieve such tight control without any hardware modifications. The basis of this method is a transient physical inverse model of the refrigerant boiling process in the evaporator, in conjunction with a feed-forward control scheme. The model parameters need to be identified from monitored data since they are chiller-specific. This paper describes the model, and applies it to one-minute monitored data from an actual chiller plant of 1580 kW (450 Tons). It is demonstrated that for this specific chiller such a control scheme has the potential to improve control accuracy by about 28% as compared to the traditional control method.
AB - Capacity control in most commercial centrifugal chillers is achieved by inlet guide vanes, which are activated by the leaving chilled water temperature sensor. Due to mechanical reasons, vane control is done discretely, and not continuously. The control module compares the value provided by the temperature sensor to pre-set control band values, and if those bands are exceeded, it sends a signal to the vane control motor to adjust the vane position by one step that could be upwards or downwards. The advantage of this type of discrete control method is its simplicity. Normally, the accuracy in the outlet chilled water temperature is of the order of 0.5°C, which is acceptable for normal cooling plants such as used in office buildings. However, there are applications such as in pharmaceutical processes, mechanics labs, or instances in chemical processes where more accurate control is required (sometimes as low as 0.05°C). This paper proposes a simple method to achieve such tight control without any hardware modifications. The basis of this method is a transient physical inverse model of the refrigerant boiling process in the evaporator, in conjunction with a feed-forward control scheme. The model parameters need to be identified from monitored data since they are chiller-specific. This paper describes the model, and applies it to one-minute monitored data from an actual chiller plant of 1580 kW (450 Tons). It is demonstrated that for this specific chiller such a control scheme has the potential to improve control accuracy by about 28% as compared to the traditional control method.
UR - http://www.scopus.com/inward/record.url?scp=78249245999&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=78249245999&partnerID=8YFLogxK
U2 - 10.1115/IMECE2002-33343
DO - 10.1115/IMECE2002-33343
M3 - Conference contribution
AN - SCOPUS:78249245999
SN - 0791836266
SN - 9780791836262
T3 - ASME International Mechanical Engineering Congress and Exposition, Proceedings
SP - 513
EP - 522
BT - Advanced Energy Systems
PB - American Society of Mechanical Engineers (ASME)
ER -