A mechanism for low-extent melts at the lithosphere-asthenosphere boundary

Research output: Contribution to journalArticle

29 Citations (Scopus)

Abstract

Recent studies have imaged sharp vertical drops in shear wave velocity at the lithosphere-asthenosphere boundary (LAB). In some regions, the magnitude of the negative velocity gradient at the LAB is too large to be explained by changes in temperature alone. This study demonstrates that small amounts of partial melt in the shallow asthenosphere are a viable model for this sharp seismic boundary. In particular, we examine melting in the upper asthenosphere at the edge of thick cratonic lithosphere, using the example of eastern North America where a sharp LAB velocity gradient has been observed. Finite element modeling of asthenospheric flow at an abrupt lateral decrease in lithosphere thickness indicates that this geometry, together with lateral plate motions, produces edge-driven convection and asthenospheric upwelling at the continental margin. A key component of this work is a comparison of the locations and extents of melting produced by using different models for the depression of the peridotite solidus with varying H2O content. In addition, we develop a simplified parameterization of the H2O-undersaturated peridotite solidus for a constant degree of H2O saturation in nominally anhydrous minerals. The patterns of mantle flow produced by our numerical modeling and various solidus parameterizations predict less than 0.1 wt % to 2.8 wt % (0.01-3.3 vol %) melting at depths between 102 and 126 km for an asthenosphere with a mantle potential temperature of 1350°C and 150 ppm H2O, or between 91 km and a maximum of 200 km for a mantle at 1350°C and 450 ppm H2O. If the asthenosphere has a mantle potential temperature ≤1340°C or contains less than 150 ppm H 2O at 3 GPa, no melting will occur. This process of generating melt in the asthenosphere to produce a sharp vertical velocity gradient at the LAB is viable in other locations where convective upwelling occurs in the shallow asthenosphere although it is dependent on asthenospheric potential temperature, composition, and H2O content. Because the asthenosphere may be heterogeneous in composition and H2O content, the onset of melting below the LAB may fluctuate with time and space, as may the magnitude of the shear velocity drop at the LAB.

Original languageEnglish (US)
Article numberQ10015
JournalGeochemistry, Geophysics, Geosystems
Volume11
Issue number10
DOIs
StatePublished - 2010
Externally publishedYes

Fingerprint

asthenosphere
lithosphere
Melting
melt
Parameterization
melting
solidus
Earth mantle
Temperature
potential temperature
Shear waves
mantle
Chemical analysis
Minerals
peridotite
upwelling water
parameterization
gradients
upwelling
Geometry

Keywords

  • lithosphere-asthenosphere boundary
  • nominally anhydrous minerals
  • North America
  • peridotite solidus

ASJC Scopus subject areas

  • Geochemistry and Petrology
  • Geophysics

Cite this

A mechanism for low-extent melts at the lithosphere-asthenosphere boundary. / Till, Christy; Elkins-Tanton, Linda; Fischer, Karen M.

In: Geochemistry, Geophysics, Geosystems, Vol. 11, No. 10, Q10015, 2010.

Research output: Contribution to journalArticle

@article{fe1a5a3ce8a54e7c9985743f103b8762,
title = "A mechanism for low-extent melts at the lithosphere-asthenosphere boundary",
abstract = "Recent studies have imaged sharp vertical drops in shear wave velocity at the lithosphere-asthenosphere boundary (LAB). In some regions, the magnitude of the negative velocity gradient at the LAB is too large to be explained by changes in temperature alone. This study demonstrates that small amounts of partial melt in the shallow asthenosphere are a viable model for this sharp seismic boundary. In particular, we examine melting in the upper asthenosphere at the edge of thick cratonic lithosphere, using the example of eastern North America where a sharp LAB velocity gradient has been observed. Finite element modeling of asthenospheric flow at an abrupt lateral decrease in lithosphere thickness indicates that this geometry, together with lateral plate motions, produces edge-driven convection and asthenospheric upwelling at the continental margin. A key component of this work is a comparison of the locations and extents of melting produced by using different models for the depression of the peridotite solidus with varying H2O content. In addition, we develop a simplified parameterization of the H2O-undersaturated peridotite solidus for a constant degree of H2O saturation in nominally anhydrous minerals. The patterns of mantle flow produced by our numerical modeling and various solidus parameterizations predict less than 0.1 wt {\%} to 2.8 wt {\%} (0.01-3.3 vol {\%}) melting at depths between 102 and 126 km for an asthenosphere with a mantle potential temperature of 1350°C and 150 ppm H2O, or between 91 km and a maximum of 200 km for a mantle at 1350°C and 450 ppm H2O. If the asthenosphere has a mantle potential temperature ≤1340°C or contains less than 150 ppm H 2O at 3 GPa, no melting will occur. This process of generating melt in the asthenosphere to produce a sharp vertical velocity gradient at the LAB is viable in other locations where convective upwelling occurs in the shallow asthenosphere although it is dependent on asthenospheric potential temperature, composition, and H2O content. Because the asthenosphere may be heterogeneous in composition and H2O content, the onset of melting below the LAB may fluctuate with time and space, as may the magnitude of the shear velocity drop at the LAB.",
keywords = "lithosphere-asthenosphere boundary, nominally anhydrous minerals, North America, peridotite solidus",
author = "Christy Till and Linda Elkins-Tanton and Fischer, {Karen M.}",
year = "2010",
doi = "10.1029/2010GC003234",
language = "English (US)",
volume = "11",
journal = "Geochemistry, Geophysics, Geosystems",
issn = "1525-2027",
publisher = "American Geophysical Union",
number = "10",

}

TY - JOUR

T1 - A mechanism for low-extent melts at the lithosphere-asthenosphere boundary

AU - Till, Christy

AU - Elkins-Tanton, Linda

AU - Fischer, Karen M.

PY - 2010

Y1 - 2010

N2 - Recent studies have imaged sharp vertical drops in shear wave velocity at the lithosphere-asthenosphere boundary (LAB). In some regions, the magnitude of the negative velocity gradient at the LAB is too large to be explained by changes in temperature alone. This study demonstrates that small amounts of partial melt in the shallow asthenosphere are a viable model for this sharp seismic boundary. In particular, we examine melting in the upper asthenosphere at the edge of thick cratonic lithosphere, using the example of eastern North America where a sharp LAB velocity gradient has been observed. Finite element modeling of asthenospheric flow at an abrupt lateral decrease in lithosphere thickness indicates that this geometry, together with lateral plate motions, produces edge-driven convection and asthenospheric upwelling at the continental margin. A key component of this work is a comparison of the locations and extents of melting produced by using different models for the depression of the peridotite solidus with varying H2O content. In addition, we develop a simplified parameterization of the H2O-undersaturated peridotite solidus for a constant degree of H2O saturation in nominally anhydrous minerals. The patterns of mantle flow produced by our numerical modeling and various solidus parameterizations predict less than 0.1 wt % to 2.8 wt % (0.01-3.3 vol %) melting at depths between 102 and 126 km for an asthenosphere with a mantle potential temperature of 1350°C and 150 ppm H2O, or between 91 km and a maximum of 200 km for a mantle at 1350°C and 450 ppm H2O. If the asthenosphere has a mantle potential temperature ≤1340°C or contains less than 150 ppm H 2O at 3 GPa, no melting will occur. This process of generating melt in the asthenosphere to produce a sharp vertical velocity gradient at the LAB is viable in other locations where convective upwelling occurs in the shallow asthenosphere although it is dependent on asthenospheric potential temperature, composition, and H2O content. Because the asthenosphere may be heterogeneous in composition and H2O content, the onset of melting below the LAB may fluctuate with time and space, as may the magnitude of the shear velocity drop at the LAB.

AB - Recent studies have imaged sharp vertical drops in shear wave velocity at the lithosphere-asthenosphere boundary (LAB). In some regions, the magnitude of the negative velocity gradient at the LAB is too large to be explained by changes in temperature alone. This study demonstrates that small amounts of partial melt in the shallow asthenosphere are a viable model for this sharp seismic boundary. In particular, we examine melting in the upper asthenosphere at the edge of thick cratonic lithosphere, using the example of eastern North America where a sharp LAB velocity gradient has been observed. Finite element modeling of asthenospheric flow at an abrupt lateral decrease in lithosphere thickness indicates that this geometry, together with lateral plate motions, produces edge-driven convection and asthenospheric upwelling at the continental margin. A key component of this work is a comparison of the locations and extents of melting produced by using different models for the depression of the peridotite solidus with varying H2O content. In addition, we develop a simplified parameterization of the H2O-undersaturated peridotite solidus for a constant degree of H2O saturation in nominally anhydrous minerals. The patterns of mantle flow produced by our numerical modeling and various solidus parameterizations predict less than 0.1 wt % to 2.8 wt % (0.01-3.3 vol %) melting at depths between 102 and 126 km for an asthenosphere with a mantle potential temperature of 1350°C and 150 ppm H2O, or between 91 km and a maximum of 200 km for a mantle at 1350°C and 450 ppm H2O. If the asthenosphere has a mantle potential temperature ≤1340°C or contains less than 150 ppm H 2O at 3 GPa, no melting will occur. This process of generating melt in the asthenosphere to produce a sharp vertical velocity gradient at the LAB is viable in other locations where convective upwelling occurs in the shallow asthenosphere although it is dependent on asthenospheric potential temperature, composition, and H2O content. Because the asthenosphere may be heterogeneous in composition and H2O content, the onset of melting below the LAB may fluctuate with time and space, as may the magnitude of the shear velocity drop at the LAB.

KW - lithosphere-asthenosphere boundary

KW - nominally anhydrous minerals

KW - North America

KW - peridotite solidus

UR - http://www.scopus.com/inward/record.url?scp=78149287966&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=78149287966&partnerID=8YFLogxK

U2 - 10.1029/2010GC003234

DO - 10.1029/2010GC003234

M3 - Article

VL - 11

JO - Geochemistry, Geophysics, Geosystems

JF - Geochemistry, Geophysics, Geosystems

SN - 1525-2027

IS - 10

M1 - Q10015

ER -