A kinetic model for metalorganic chemical vapor deposition from trimethylgallium and arsine

Research output: Contribution to journalArticle

11 Citations (Scopus)

Abstract

A kinetic model based on the collision theory of chemical reactions is proposed for gallium arsenide (GaAs) metalorganic chemical vapor deposition from trimethylgallium and arsine. A simplified reaction mechanism is incorporated into the model, which includes four heterogeneous deposition reactions: Ga-containing and As-containing species with Ga and As sites, as well as carbon incorporation reactions. An equation for the overall growth rate of the four deposition reactions is derived, which is simplified under the Ga-rich or As-rich growth condition. A discussion about antisite defects leads to the conclusion that As-rich growth produces stoichiometric GaAs. The relation between temperature and arsine/trimethylgallium ratio for As-rich growth is defined. The concept of competitive adsorption is introduced to understand doping and ternary deposition. Carrier concentration for n-type, p-type, and amphoteric doping as a function of deposition conditions is derived. Conversion from p type to n type with arsine/trimethylgallium ratio due to residual carbon is, for the first time, quantitatively explained within the framework of doping. Film composition as a function of deposition conditions in ternary deposition of aluminum-gallium arsenide (Al1-xGaxAs) and gallium arsenide-phosphide (GaAs1-yPy) is also derived. The distributions of Al and P between gas phase and solid film follow the same physics rule but differ in the nature of impinging species. The quantitative agreement between the model and a wide range of experiments demonstrates the value of this model.

Original languageEnglish (US)
Pages (from-to)3554-3562
Number of pages9
JournalJournal of Applied Physics
Volume87
Issue number7
StatePublished - Apr 2000
Externally publishedYes

Fingerprint

metalorganic chemical vapor deposition
gallium
kinetics
antisite defects
phosphides
carbon
chemical reactions
vapor phases
aluminum
physics
adsorption
collisions
temperature

ASJC Scopus subject areas

  • Physics and Astronomy(all)
  • Physics and Astronomy (miscellaneous)

Cite this

A kinetic model for metalorganic chemical vapor deposition from trimethylgallium and arsine. / Tao, Meng.

In: Journal of Applied Physics, Vol. 87, No. 7, 04.2000, p. 3554-3562.

Research output: Contribution to journalArticle

@article{2ca814f9c00147bdbedbed5ac8556ce8,
title = "A kinetic model for metalorganic chemical vapor deposition from trimethylgallium and arsine",
abstract = "A kinetic model based on the collision theory of chemical reactions is proposed for gallium arsenide (GaAs) metalorganic chemical vapor deposition from trimethylgallium and arsine. A simplified reaction mechanism is incorporated into the model, which includes four heterogeneous deposition reactions: Ga-containing and As-containing species with Ga and As sites, as well as carbon incorporation reactions. An equation for the overall growth rate of the four deposition reactions is derived, which is simplified under the Ga-rich or As-rich growth condition. A discussion about antisite defects leads to the conclusion that As-rich growth produces stoichiometric GaAs. The relation between temperature and arsine/trimethylgallium ratio for As-rich growth is defined. The concept of competitive adsorption is introduced to understand doping and ternary deposition. Carrier concentration for n-type, p-type, and amphoteric doping as a function of deposition conditions is derived. Conversion from p type to n type with arsine/trimethylgallium ratio due to residual carbon is, for the first time, quantitatively explained within the framework of doping. Film composition as a function of deposition conditions in ternary deposition of aluminum-gallium arsenide (Al1-xGaxAs) and gallium arsenide-phosphide (GaAs1-yPy) is also derived. The distributions of Al and P between gas phase and solid film follow the same physics rule but differ in the nature of impinging species. The quantitative agreement between the model and a wide range of experiments demonstrates the value of this model.",
author = "Meng Tao",
year = "2000",
month = "4",
language = "English (US)",
volume = "87",
pages = "3554--3562",
journal = "Journal of Applied Physics",
issn = "0021-8979",
publisher = "American Institute of Physics Publising LLC",
number = "7",

}

TY - JOUR

T1 - A kinetic model for metalorganic chemical vapor deposition from trimethylgallium and arsine

AU - Tao, Meng

PY - 2000/4

Y1 - 2000/4

N2 - A kinetic model based on the collision theory of chemical reactions is proposed for gallium arsenide (GaAs) metalorganic chemical vapor deposition from trimethylgallium and arsine. A simplified reaction mechanism is incorporated into the model, which includes four heterogeneous deposition reactions: Ga-containing and As-containing species with Ga and As sites, as well as carbon incorporation reactions. An equation for the overall growth rate of the four deposition reactions is derived, which is simplified under the Ga-rich or As-rich growth condition. A discussion about antisite defects leads to the conclusion that As-rich growth produces stoichiometric GaAs. The relation between temperature and arsine/trimethylgallium ratio for As-rich growth is defined. The concept of competitive adsorption is introduced to understand doping and ternary deposition. Carrier concentration for n-type, p-type, and amphoteric doping as a function of deposition conditions is derived. Conversion from p type to n type with arsine/trimethylgallium ratio due to residual carbon is, for the first time, quantitatively explained within the framework of doping. Film composition as a function of deposition conditions in ternary deposition of aluminum-gallium arsenide (Al1-xGaxAs) and gallium arsenide-phosphide (GaAs1-yPy) is also derived. The distributions of Al and P between gas phase and solid film follow the same physics rule but differ in the nature of impinging species. The quantitative agreement between the model and a wide range of experiments demonstrates the value of this model.

AB - A kinetic model based on the collision theory of chemical reactions is proposed for gallium arsenide (GaAs) metalorganic chemical vapor deposition from trimethylgallium and arsine. A simplified reaction mechanism is incorporated into the model, which includes four heterogeneous deposition reactions: Ga-containing and As-containing species with Ga and As sites, as well as carbon incorporation reactions. An equation for the overall growth rate of the four deposition reactions is derived, which is simplified under the Ga-rich or As-rich growth condition. A discussion about antisite defects leads to the conclusion that As-rich growth produces stoichiometric GaAs. The relation between temperature and arsine/trimethylgallium ratio for As-rich growth is defined. The concept of competitive adsorption is introduced to understand doping and ternary deposition. Carrier concentration for n-type, p-type, and amphoteric doping as a function of deposition conditions is derived. Conversion from p type to n type with arsine/trimethylgallium ratio due to residual carbon is, for the first time, quantitatively explained within the framework of doping. Film composition as a function of deposition conditions in ternary deposition of aluminum-gallium arsenide (Al1-xGaxAs) and gallium arsenide-phosphide (GaAs1-yPy) is also derived. The distributions of Al and P between gas phase and solid film follow the same physics rule but differ in the nature of impinging species. The quantitative agreement between the model and a wide range of experiments demonstrates the value of this model.

UR - http://www.scopus.com/inward/record.url?scp=3242824890&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=3242824890&partnerID=8YFLogxK

M3 - Article

VL - 87

SP - 3554

EP - 3562

JO - Journal of Applied Physics

JF - Journal of Applied Physics

SN - 0021-8979

IS - 7

ER -