A Geographic Object-Based Approach for Land Classification Using LiDAR Elevation and Intensity

Xiran Zhou, WenWen Li

Research output: Contribution to journalArticle

7 Scopus citations

Abstract

By providing detailed height and intensity land surface information, high-resolution LiDAR data have proved to be effective in supporting land classification when combined with other major geospatial data sources, such as hyperspectral images. However, rectifying and fusing multisource geospatial data involves what normally is a manual and time-consuming process. In this letter, we propose a geographic object-based image analysis approach to enable semiautomatic land classification and mapping using LiDAR elevation and intensity data. The methodological framework consists of a series of operations, including preprocessing, object-based segmentation, creation of statistical variables from elevation and intensity, and semisupervised classification. We have successfully applied this approach to the classification of multiple land features, including asphalt, grass, barren land, swimming pool, shrubland, pavement, and buildings. Results show that our proposed approach performs better than LiDAR analysis methods in classifying different land parcels.

Original languageEnglish (US)
Article number7891917
Pages (from-to)669-673
Number of pages5
JournalIEEE Geoscience and Remote Sensing Letters
Volume14
Issue number5
DOIs
StatePublished - May 1 2017

Keywords

  • Geographic object-based image analysis (GEOBIA)
  • LiDAR data classification
  • object-based image classification

ASJC Scopus subject areas

  • Geotechnical Engineering and Engineering Geology
  • Electrical and Electronic Engineering

Fingerprint Dive into the research topics of 'A Geographic Object-Based Approach for Land Classification Using LiDAR Elevation and Intensity'. Together they form a unique fingerprint.

  • Cite this