TY - JOUR
T1 - A functional MRI investigation of crossmodal interference in an audiovisual Stroop task
AU - Fitzhugh, Megan C.
AU - Whitehead, Peter S.
AU - Johnson, Lisa
AU - Cai, Julia M.
AU - Baxter, Leslie C.
AU - Reddy, Corianne
N1 - Funding Information:
Arizona State University awarded to Corianne Rogalsky. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Publisher Copyright:
© 2019 Fitzhugh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
PY - 2019/1
Y1 - 2019/1
N2 - The visual color-word Stroop task is widely used in clinical and research settings as a measure of cognitive control. Numerous neuroimaging studies have used color-word Stroop tasks to investigate the neural resources supporting cognitive control, but to our knowledge all have used unimodal (typically visual) Stroop paradigms. Thus, it is possible that this classic measure of cognitive control is not capturing the resources involved in multisensory cognitive control. The audiovisual integration and crossmodal correspondence literatures identify regions sensitive to congruency of auditory and visual stimuli, but it is unclear how these regions relate to the unimodal cognitive control literature. In this study we aimed to identify brain regions engaged by crossmodal cognitive control during an audiovisual color-word Stroop task, and how they relate to previous unimodal Stroop and audiovisual integration findings. First, we replicated previous behavioral audiovisual Stroop findings in an fMRI-adapted audiovisual Stroop paradigm: incongruent visual information increased reaction time towards an auditory stimulus and congruent visual information decreased reaction time. Second, we investigated the brain regions supporting cognitive control during an audiovisual color-word Stroop task using fMRI. Similar to unimodal cognitive control tasks, a left superior parietal region exhibited an interference effect of visual information on the auditory stimulus. This superior parietal region was also identified using a standard audiovisual integration localizing procedure, indicating that audiovisual integration resources are sensitive to cognitive control demands. Facilitation of the auditory stimulus by congruent visual information was found in posterior superior temporal cortex, including in the posterior STS which has been found to support audiovisual integration. The dorsal anterior cingulate cortex, often implicated in unimodal Stroop tasks, was not modulated by the audiovisual Stroop task. Overall the findings indicate that an audiovisual color-word Stroop task engages overlapping resources with audiovisual integration and overlapping but distinct resources compared to unimodal Stroop tasks.
AB - The visual color-word Stroop task is widely used in clinical and research settings as a measure of cognitive control. Numerous neuroimaging studies have used color-word Stroop tasks to investigate the neural resources supporting cognitive control, but to our knowledge all have used unimodal (typically visual) Stroop paradigms. Thus, it is possible that this classic measure of cognitive control is not capturing the resources involved in multisensory cognitive control. The audiovisual integration and crossmodal correspondence literatures identify regions sensitive to congruency of auditory and visual stimuli, but it is unclear how these regions relate to the unimodal cognitive control literature. In this study we aimed to identify brain regions engaged by crossmodal cognitive control during an audiovisual color-word Stroop task, and how they relate to previous unimodal Stroop and audiovisual integration findings. First, we replicated previous behavioral audiovisual Stroop findings in an fMRI-adapted audiovisual Stroop paradigm: incongruent visual information increased reaction time towards an auditory stimulus and congruent visual information decreased reaction time. Second, we investigated the brain regions supporting cognitive control during an audiovisual color-word Stroop task using fMRI. Similar to unimodal cognitive control tasks, a left superior parietal region exhibited an interference effect of visual information on the auditory stimulus. This superior parietal region was also identified using a standard audiovisual integration localizing procedure, indicating that audiovisual integration resources are sensitive to cognitive control demands. Facilitation of the auditory stimulus by congruent visual information was found in posterior superior temporal cortex, including in the posterior STS which has been found to support audiovisual integration. The dorsal anterior cingulate cortex, often implicated in unimodal Stroop tasks, was not modulated by the audiovisual Stroop task. Overall the findings indicate that an audiovisual color-word Stroop task engages overlapping resources with audiovisual integration and overlapping but distinct resources compared to unimodal Stroop tasks.
UR - http://www.scopus.com/inward/record.url?scp=85060035674&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85060035674&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0210736
DO - 10.1371/journal.pone.0210736
M3 - Article
C2 - 30645634
AN - SCOPUS:85060035674
SN - 1932-6203
VL - 14
JO - PLoS One
JF - PLoS One
IS - 1
M1 - e0210736
ER -