A comprehensive computer-aided polyp detection system for colonoscopy videos

Nima Tajbakhsh, Suryakanth R. Gurudu, Jianming Liang

    Research output: Contribution to journalArticle

    34 Scopus citations

    Abstract

    Computer-aided detection (CAD) can help colonoscopists reduce their polyp miss-rate, but existing CAD systems are handicapped by using either shape, texture, or temporal information for detecting polyps, achieving limited sensitivity and specificity. To overcome this limitation, our key contribution of this paper is to fuse all possible polyp features by exploiting the strengths of each feature while minimizing its weaknesses. Our new CAD system has two stages, where the first stage builds on the robustness of shape features to reliably generate a set of candidates with a high sensitivity, while the second stage utilizes the high discriminative power of the computationally expensive features to effectively reduce false positives. Specifically, we employ a unique edge classifier and an original voting scheme to capture geometric features of polyps in context and then harness the power of convolutional neural networks in a novel score fusion approach to extract and combine shape, color, texture, and temporal information of the candidates. Our experimental results based on FROC curves and a new analysis of polyp detection latency demonstrate a superiority over the state-of-the-art where our system yields a lower polyp detection latency and achieves a significantly higher sensitivity while generating dramatically fewer false positives. This performance improvement is attributed to our reliable candidate generation and effective false positive reduction methods.

    Original languageEnglish (US)
    Article numberA25
    Pages (from-to)327-338
    Number of pages12
    JournalLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
    Volume9123
    DOIs
    StatePublished - 2015

      Fingerprint

    ASJC Scopus subject areas

    • Theoretical Computer Science
    • Computer Science(all)

    Cite this