A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the Garnets

Yasushi Kanke, Alexandra Navrotsky

Research output: Contribution to journalArticlepeer-review

114 Scopus citations

Abstract

High-temperature solution calorimetry using a 2PbO · B2O3solvent at 977 K was performed forLnMO3perovskites andLn3M5O12garnets (Ln=La-Lu, Y;M=Al, Ga),α-Al2O3, andβ-Ga2O3. The following four reactions were discussed from the viewpoint of thermodynamic parameters, ΔH, ΔS, and ΔV;LnMO3=15Ln3M5O12+15Ln 2O3,Ln3M5O12= 3LnMO3+M2O3, 12Ln2O3+ 12M2O3=LnMO3, and32Ln2O3+52M2O3=Ln 3M5O12. The stability ofLnMO3against the disproportionation to garnet plus sesquioxide is controlled almost entirely by ΔHandPΔVbut not byTΔS. On the contrary, the stability ofLn3M5O12against disproportionation to perovskite plus sesquioxide is controlled not only by ΔHandPΔVbut also byTΔS. TheP-Tboundary betweenLn3M5O12and 3LnMO3+M2O3has a negative slope. The positive ΔSand negative ΔVfor the disproportionation are caused by an increase in coordination number and anincreasein bond distance. ΔHof perovskite formation is mainly controlled by two factors, the strengthening of the ionic bond inLn2O3with decreasing ionic radius ofLn3+and theweakeningof the ionic bond betweenLnand the distant four O atoms inLnMO3with decreasing ionic radius ofLn3+. ΔHof garnet formation is mainly controlled by two factors, the strengthening of the ionic bond inLn2O3with decreasing ionic radius ofLn3+and the deviation of the ionic radius ofLn3+from the optimum size for the garnet structure. ΔSvalues of both perovskite formation and garnet formation are deduced to be negative, which suggests thatLn2O3phases possess relatively large entropies.

Original languageEnglish (US)
Pages (from-to)424-436
Number of pages13
JournalJournal of Solid State Chemistry
Volume141
Issue number2
DOIs
StatePublished - Dec 1998
Externally publishedYes

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Ceramics and Composites
  • Condensed Matter Physics
  • Physical and Theoretical Chemistry
  • Inorganic Chemistry
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'A Calorimetric Study of the Lanthanide Aluminum Oxides and the Lanthanide Gallium Oxides: Stability of the Perovskites and the Garnets'. Together they form a unique fingerprint.

Cite this