A Bayesian spatial shared component model for identifying crime-general and crime-specific hotspots

Jane Law, Matthew Quick, Afraaz Jadavji

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

The spatial patterning of crime hotspots provides place-based information for the design, allocation, and implementation of crime prevention policies and programmes. However, most spatial hotspot identification methods are univariate, analyse a single crime type, and do not consider if hotspots are shared amongst multiple crime types. This study applies a Bayesian spatial shared component model to identify crime-general and crime-specific hotspots for violent crime and property crime at the small-area scale. The spatial shared component model jointly analyzes both violent crime and property crime and separates the area-specific risks of each crime type into one shared component, which captures the underlying crime-general spatial pattern common to both crime types, and one type-specific component, which captures the crime-specific spatial pattern that diverges from the shared pattern. Crime-general and crime-specific hotspots are classified based on the posterior probability estimates of the shared and type-specific components, respectively. Results show that the crime-general pattern explains approximately 81% of the total variation of violent crime and 70% of the total variation of property crime. Crime-general hotspots are found to be more frequent than crime-specific hotspots, and property crime-specific hotspots are more frequent than violent crime-specific hotspots. Crime-general and crime-specific hotspots are areas that may be targeted with comprehensive initiatives designed for multiple crime types or specialized initiatives designed for a single crime type, respectively.

Original languageEnglish (US)
Pages (from-to)65-79
Number of pages15
JournalAnnals of GIS
Volume26
Issue number1
DOIs
StatePublished - Jan 2 2020
Externally publishedYes

Keywords

  • Bayesian modelling
  • crime hotspot
  • multivariate
  • shared component
  • spatial pattern

ASJC Scopus subject areas

  • Computer Science Applications
  • Earth and Planetary Sciences(all)

Fingerprint

Dive into the research topics of 'A Bayesian spatial shared component model for identifying crime-general and crime-specific hotspots'. Together they form a unique fingerprint.

Cite this