Abstract

Time series classification is an important task with many challenging applications. A nearest neighbor (NN) classifier with dynamic time warping (DTW) distance is a strong solution in this context. On the other hand, feature-based approaches have been proposed as both classifiers and to provide insight into the series, but these approaches have problems handling translations and dilations in local patterns. Considering these shortcomings, we present a framework to classify time series based on a bag-of-features representation (TSBF). Multiple subsequences selected from random locations and of random lengths are partitioned into shorter intervals to capture the local information. Consequently, features computed from these subsequences measure properties at different locations and dilations when viewed from the original series. This provides a feature-based approach that can handle warping (although differently from DTW). Moreover, a supervised learner (that handles mixed data types, different units, etc.) integrates location information into a compact codebook through class probability estimates. Additionally, relevant global features can easily supplement the codebook. TSBF is compared to NN classifiers and other alternatives (bag-of-words strategies, sparse spatial sample kernels, shapelets). Our experimental results show that TSBF provides better results than competitive methods on benchmark datasets from the UCR time series database.

Original languageEnglish (US)
Article number6497440
Pages (from-to)2796-2802
Number of pages7
JournalIEEE Transactions on Pattern Analysis and Machine Intelligence
Volume35
Issue number11
DOIs
Publication statusPublished - 2013

    Fingerprint

Keywords

  • codebook
  • feature extraction
  • Supervised learning

ASJC Scopus subject areas

  • Artificial Intelligence
  • Computer Vision and Pattern Recognition
  • Software
  • Computational Theory and Mathematics
  • Applied Mathematics
  • Medicine(all)

Cite this