A 2MASS/AllWISE Search for Extremely Red L Dwarfs: The Discovery of Several Likely L Type Members of β Pic, AB Dor, Tuc-Hor, Argus, and the Hyades

Adam C. Schneider, James Windsor, Michael C. Cushing, J. Davy Kirkpatrick, Evgenya Shkolnik

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Young brown dwarfs share many properties with directly imaged giant extrasolar planets. They therefore provide unique laboratories for investigating the full range of temperature and mass encompassed by the growing collection of planets discovered outside our Solar System. Furthermore, if they can be tied to a particular group of coeval stars, they also provide vital anchor points for low-mass empirical isochrones. We have developed a novel procedure for identifying such objects based on their unique 2MASS and AllWISE colors. Using our search criteria, we have identified 50 new, late-type L dwarf candidates, 47 of which are spectroscopically confirmed as L dwarfs with follow-up near-infrared spectroscopy. We evaluate the potential membership of these objects in nearby, young moving groups using their proper motions, photometric distance estimates, and spectroscopic indicators of youth, and find seven likely L-type members belonging to the β Pictoris moving group, the AB Doradus moving group, the Tucana-Horologium association, or the Argus association, in addition to several lower probability members. Also found are two late-type (L5 and L6) potential members of the nearby Hyades cluster (WISEA J043642.75+190134.8 and WISEA J044105.56+213001.5).

Original languageEnglish (US)
Article number196
JournalAstronomical Journal
Volume153
Issue number4
DOIs
StatePublished - Apr 2017

Keywords

  • brown dwarfs

ASJC Scopus subject areas

  • Astronomy and Astrophysics
  • Space and Planetary Science

Fingerprint

Dive into the research topics of 'A 2MASS/AllWISE Search for Extremely Red L Dwarfs: The Discovery of Several Likely L Type Members of β Pic, AB Dor, Tuc-Hor, Argus, and the Hyades'. Together they form a unique fingerprint.

Cite this