200 mm wafer-scale integration of sub-20 nm sacrificial nanofluidic channels for manipulating and imaging single DNA molecules

C. Wang, S. W. Nam, J. M. Cotte, H. Peng, C. V. Jahnes, D. Wang, R. Bruce, M. Guillorn, L. M. Gignac, W. H. Advocate, C. M. Breslin, M. Brink, J. Bucchignano, E. A. Duch, A. Galan, E. Kratschmer, P. J. Litwinowicz, M. F. Lofaro, W. Price, S. M. RossnagelR. D. Goldblatt, E. A. Joseph, D. Pfeiffer, S. Papa Rao, A. Royyuru, G. A. Stolovitzky, E. G. Colgan, Q. Lin, S. Polonsky

Research output: Chapter in Book/Report/Conference proceedingConference contribution

1 Scopus citations

Abstract

We report sub-20 nm sacrificial nanochannels that enable stretching and translocating single DNA molecules. Sacrificial silicon nano-structures were etched with XeF2 to form nanochannels. Translocations of linearized DNA single molecules were imaged by fluorescence microscopy. Our method offers a manufacturable wafer-scale approach for CMOS-compatible bio-chip platform.

Original languageEnglish (US)
Title of host publication2013 IEEE International Electron Devices Meeting, IEDM 2013
Pages14.1.1-14.1.4
DOIs
StatePublished - Dec 1 2013
Externally publishedYes
Event2013 IEEE International Electron Devices Meeting, IEDM 2013 - Washington, DC, United States
Duration: Dec 9 2013Dec 11 2013

Publication series

NameTechnical Digest - International Electron Devices Meeting, IEDM
ISSN (Print)0163-1918

Other

Other2013 IEEE International Electron Devices Meeting, IEDM 2013
CountryUnited States
CityWashington, DC
Period12/9/1312/11/13

ASJC Scopus subject areas

  • Electronic, Optical and Magnetic Materials
  • Condensed Matter Physics
  • Electrical and Electronic Engineering
  • Materials Chemistry

Fingerprint Dive into the research topics of '200 mm wafer-scale integration of sub-20 nm sacrificial nanofluidic channels for manipulating and imaging single DNA molecules'. Together they form a unique fingerprint.

Cite this