Sustainable Urban Development in the Sun Corridor: Finding Engineering Alternatives through Coupled WRF-Urban Land Surface Modeling

Project: Research project

Project Details


Sustainable Urban Development in the Sun Corridor: Finding Engineering Alternatives through Coupled WRF-Urban Land Surface Modeling Sustainable Urban Development in the Sun Corridor: Finding Engineering Alternatives through Coupled WRF-Urban Land Surface Modeling Project Summary: Rapid urbanization is associated with substantial modifications of land use and land cover (LULC), producing complex socio-ecological urban landscapes. Changes in LULC have profound impacts on urban-land-atmosphere interactions, with modification of the transport of energy, water, and tracers over built terrains. Well-known effects of these changes include the urban heat island (UHI) and the emission of greenhouse gases and pollutants, which will likely be exacerbated by anticipated climate change. In this project, we will use normative scenarios of Arizonas Sun Corridor developed jointly by city planners and researchers as prototypes for investigating urban system dynamics. The Sun Corridor is one of the fastest growing urban areas in the U.S. Rapid expansion of the Sun Corridor has attracted increasing research attention on many socio-ecological issues such as the UHI effect and regional hydroclimate impacts. Despite this effort, there is a lack of novel physical modeling framework to investigate how innovative engineering design and socioeconomic planning can help to mitigate adverse environmental effects. This project aims to bridge this gap. Our central hypothesis is that innovative engineering design of urban infrastructure can effectively offset the impact of global and regional hydroclimatic changes in promoting urban sustainability and reducing vulnerability of cities to climatic extremes. To address this, urban system dynamics including human-environment interactions need to be faithfully represented by multi-scale modeling frameworks (MMF) at high resolution with statistically quantified uncertainty. Intellectual Merit: In this project, we will develop a MMF by integrating the Weather Research and Forecasting (WRF) model with a state-of-the-art urban land surface model (LSM) to capture anthropogenic stresses and coupled transport of water and energy in urban canopies. The major outcome of the proposed work will be the application of the integrated WRF-LSM for assessment of urban planning strategies. The result of simulations will shed light on how engineering infrastructure can ameliorate urban stresses, for example the adoption of urban vegetation to mitigate UHI. The proposed work is expected to provide guidelines of sustainable urban development for land use and water resource planners, embracing various dimensions including water resources, hydroclimate, and engineering infrastructure. In addition, the statistical characterization of model uncertainty will provide insight into the vulnerability and risk management of urban environments to LULC and climate changes. Though this study is focused on the Sun Corridor, research findings of this proposal are expected to have implications to other cities. Broader Impacts: This project will actively engage stakeholders and personnel from local cities and water resources and land planning agencies. We will seek participation and feedbacks from stakeholders in modeling efforts, scenario development, and interpretation of research findings to local cities and agencies throughout the project duration. Two-way communication between the project team and stakeholders will be conducted through regular meetings and annual workshops organized by the Decision Center for a Desert City (DCDC) at the Arizona State University. For example, LULC characteristics under future urban development will be gathered from city planners as the boundary conditions to the integrated WRF-LSM model. Meetings with stakeholders will be facilitated by auxiliary 3D graphic presentation and other innovative dissemination mechanisms. In addition, this project will support one research engineer and two graduate students at the Ph.D. level, who will be actively engaged in education and outreach activities throughout the project duration. Research findings of this study will be incorporated into undergraduate- and graduated-level courses, and disseminated to scientific communities as well as broader audiences, through conference presentations, peer-reviewed journal publications, and outreach activities.
Effective start/end date9/1/142/28/19


  • National Science Foundation (NSF): $299,838.00


Explore the research topics touched on by this project. These labels are generated based on the underlying awards/grants. Together they form a unique fingerprint.