• 27 Citations
  • 3 h-Index
20122024
If you made any changes in Pure, your changes will be visible here soon.

Fingerprint Dive into the research topics where Florian Sprung is active. These topic labels come from the works of this person. Together they form a unique fingerprint.

  • 3 Similar Profiles
P-adic L-function Mathematics
Cyclotomic Mathematics
Selmer Group Mathematics
Modular Forms Mathematics
Elliptic Curves Mathematics
Iwasawa Invariants Mathematics
P-adic Mathematics
Iwasawa Theory Mathematics

Network Recent external collaboration on country level. Dive into details by clicking on the dots.

Research Output 2012 2019

  • 27 Citations
  • 3 h-Index
  • 6 Article

Consequences of functional equations for pairs of p-adic L-functions

Dion, C. & Sprung, F., Oct 1 2019, In : Abhandlungen aus dem Mathematischen Seminar der Universitat Hamburg. 89, 2, p. 203-208 6 p.

Research output: Contribution to journalArticle

P-adic L-function
Functional equation
Twist
Elliptic Curves
Parity
2 Citations (Scopus)

On pairs of P-Adic L-Functions for weight-two modular forms

Sprung, F., Jan 1 2017, In : Algebra and Number Theory. 11, 4, p. 885-928 44 p.

Research output: Contribution to journalArticle

P-adic L-function
Cyclotomic
Modular Forms
L-function
P-adic
3 Citations (Scopus)

Zeta-polynomials for modular form periods

Ono, K., Rolen, L. & Sprung, F., Jan 14 2017, In : Advances in Mathematics. 306, p. 328-343 16 p.

Research output: Contribution to journalArticle

Modular Forms
Signed number
Ehrhart Polynomial
Moment
Stirling numbers
1 Citation (Scopus)
P-adic
Formulation
Highest common factor
Generalise
L-function
3 Citations (Scopus)

The Šafarevič-Tate group in cyclotomic ℤp- extensions at supersingular primes

Sprung, F., Aug 1 2013, In : Journal fur die Reine und Angewandte Mathematik. 681, p. 199-218 20 p.

Research output: Contribution to journalArticle

Iwasawa Invariants
Selmer Group
Cyclotomic
Odd

Projects 2019 2024

Tate-Shafarevich groups

Sprung, F.

Simons Foundation

9/1/198/31/24

Project: Research project

Modular Forms
L-function
Number field
Invariant
Estimate