Changes in ventromedial prefrontal and insular cortex support the development of metamemory from childhood into adolescence.

  • Diana Selmeczy (Creator)
  • Yana Fandakova (Creator)
  • Kevin Grimm (Creator)
  • Silvia A. Bunge (Creator)
  • Simona Ghetti (Creator)

Dataset

Description

Metamemory monitoring, or the ability to introspect on the accuracy of one's memories, improves considerably during childhood, but the underlying neural changes and implications for intellectual development are largely unknown. The present study examined whether cortical changes in key brain areas hypothesized to support metacognition contribute to the development of metamemory monitoring from late childhood into early adolescence. Metamemory monitoring was assessed among 7- to 12-y-old children (n = 145) and adults (n = 31). Children returned for up to two additional assessments at 8 to 14 y of age (n = 120) and at 9 to 15 y of age (n = 107) (n = 347 longitudinal scans). Results showed that metamemory monitoring continues to improve from childhood into adolescence. More pronounced cortical thinning in the anterior insula and a greater increase in the thickness of the ventromedial prefrontal cortex over the three assessment points predicted these improvements. Thus, performance benefits are linked to the unique patterns of regional cortical change during development. Metamemory monitoring at the first time point predicted intelligence at the third time point and vice versa, suggesting parallel development of these abilities and their reciprocal influence. Together, these results provide insights into the neuroanatomical correlates supporting the development of the capacity to self-reflect, and highlight the role of this capacity for general intellectual development.
Date made available2018
PublisherNIMH Data Archive

Cite this